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+ 
A vector potential 

A , .  i '  constant  defined by Equation (Al5) 

Bn constants  defined i n  Appendix C 

a,b,d arbitrary  constants (see Appndices A and B) 

am constant employed i n  the series expansion for the jet sheet 
location 

am, bmn constants  defined i n  Appendix C 

B constant  defined by Equation (Al6) 

brn constant  defined by Equation,(D5) 

CA constant  defined in Appendix B 

CD drag coefficient 

cJ j et-manentum coefficient 

'n constant enployed i n  the expansion for the s t r d s e  distri- 
bution of the vortex strength 

cL l i f t  coefficient 

cP pressure coefficient 

C a i r foi l  chord, arbitrary constant (see Appendices A and B) 
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h 

I 

J 

constants defined i n  Appendix C 

drag force on the airfoil : 
. .  

canplete elliptic integral of the second kind 

reminder in Simpson's cunpound integration rule. 

unit vector 

damping factor 

variable define i by Bpation (59 

a rb i t ra ry  function 

streamwise distribution of the je t 'vor tex strength 

variable defined by Equation (58) 

streamwise distribution of the jet vortex  strength such that 
g(x) = G[S(x,fJ)], constant (see Appendix A) 

function anployed in the  series expansion of g 

spanwise distribution of the jet vortex strength such that 
H = dh/drl 

spanwise distribution of the jet eortex strength, step size 
enployed i n  the  numerical algorithm 

. .  
arbitrary  integral 

arbitrary i n t e a l ,  jet nnnentum flux per unit span 
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K amplet8 elliptic integral of the fimt wnd 

k 

kc 

L 

1.e. 

YD 

t 

P 

PIH) 

P 

Q 

Qi 

-b 

R 

R 

constant defined in Appmdix B 

constants defined in Aggendix B 

unit mama1 vector 

variable  defined by Elquation (A25) 

Pr-e 

variable  defined by -tion (Aa6) 

variable defined by -tion ( 5 2 )  

arbitrary canstant (eee Apperriix A) 

d i s m e  from a source point to a field point 

mgniade of $, variable  defined by Equatim ( A n )  

r midual of a least square fit far a function,  in-tioa 
variable (- Agpencllx A) 
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S surface 

si variable defined by 4 m t i o n  (54) 

Ti variable defined by EQuation (53) 

t jet thickness 

tni variable def ined by 4 m t i o n  (55) 

t.e. trailing edge of the airfoil 

U,V,W components  of the total velocity  vector 

U x-canponent of the disturbance  velocity  vector,  integration 
variable (see Appendix A) 

v,w canponents of the disturbance velocity  vector 

? total velocity  vector 

V 
-+ disturbnce velocity  vector 

x, y , z rectangular 

X 
-+ vector i n  a rectangular coordinate systan 

xb location of the bound vortex  line 

- 
X nodimensional variable such that x = vx/sJ 
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xi 

aA 

variable  defined in Appewiix E 

angle of attack, integration  constant  defined -tion (A21) 

parameter of the elliptic integral of the third kind 
(- 4. (65)) 

OL2 integration  constant  defined by -tion (A22) 

B scale factor anployed in the expansion for the streamwise distri- 
bution of the vortex strength 

r circulation of the horseshoe vortex system 

-+ 
Y vortex strength vector 

Y parameter of the elliptic integral of the third kiad (see 
Apperdices A and B) 

b difference betwen the values of a variable on each side of a 
vortex sheet; step size (see Appendix E) 

Ci -11 neighborhood of the origin 

5 s  €2 define a -11 neighborhood of the  control  point 

0 scalar potential for the total velocity  vector 

0 scalar potential for the disturbance velocity  vector 

$1 variable defined by EQntion (C4) 

+Ill constant defined by Appendix C 
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0 downwash angle 

e angle between the nom to the jet sheet arxl gz 

K curvature 

IC 
0 curvature obtained fm a previous iterate 

*n variable defined by Quation (D3) 

V scale factor anployed i n  the series expansion for the jet sheet 
location 

- 
I 
L variable defined by 4uat ion (El) 

5 ,  q, 5 coordinate system located within the jet sheet, arbitw 
integration variables (see Appendix A) 

variable defined i n  Appendix E 

II complete el l ipt ic   integral  of the thiml kind 

IT = 3.1415926... 

P ~lls~ss density of the free stream, arbitrary  integration variable 
(see Appedix A) 

c 

T 

'd 

T 

sumnation symbol 

jetdef lect ion angle 

doublet strength 

a region i n  space 
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19 
- . , ._ " .. . ... . . . . . . . . . . . ~.~~ . . .. .. ,, . ,. , ,. 

JI slope of the airfoil surface i n  an x-z plane 

w vorticity vector + 

Subscripts 

. .  per@mmg to the airfoil 

pertaining to the jet 

average of the values for a parameter on 8&ch side of a vortex 
sheet 

pertaining to the plane of symnetry ( ~ 0 )  

pertaining to the pressure force on the airfoil 

cunponents in a rectangular coardinate systan 

components i n  a coordinate systan located on the jet sheet 

pertaining to the free stream 

Superscripts 

+ value of a parameter above the vortex sheet 

- value of a Wameter below the vortex sheet 

I pertaining to a source point 

* cunplex conjug;lte 
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pertaining to the  point which defines  the boundary belneen the 
inner and outer  regions of the jet sheet, pertaining to a 
region containing the starting vortex of the system 

vector 

I. INTRODUCTION 

Recent interest in STOL aircragt has  stimulated  investigations of 

airfoil  configurations employing both powered and unpowered devices for 

obtaining  high l i f t  coefficients and inproved stabil i ty  characterist ics 

at  low f l ight  speeds. The practical   feasibil i ty of  the powered schemes, 

such as   j e t   f l aps ,  blown flaps,  and augmentor wings was greatly enhanced 

with the advent of high by-pass ra t io  engines. This provided substan- 

tial incentive  for  obtaining  theories  capable of predicting induced 

velocity  fields and forces  for  configurations employing such devices. 

A je t  f lap comprises a thin j e t  of a i r  exhausting from the trail- 

ing edge of the a i r f o i i  a t  an  angle t o  the  direction of the  freestream 

(refer  to  Figure 1). The presence of  the j e t  contributes  to  the l i f t  of 

the a i r fo i l  in two ways:  (1) the aerodynamic f ie ld  is altered by the 

jet,  increasing  the  net  lifting  pressure  force on the wing's surface, 

and (2) the  reaction  to  the momentm flux of the jet  contributes to  the 

l i f t .  Two related devices,  the blown f lap and the auLmentor  wing are 

also shown in Figure 1. In  the  blom flap scheme the high velocity je t  

is ejected over the upper surface of a mechanical f lap  uti l izing  the 

Coanda ef fec t   to   d i rec t   the   j e t  stream. The augmentor wing employs an 

ejector system combined with  the  trailing edge f lap design in order t o  
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a m t  the thrust of the pr-y jet. This latter d k c e  develops an 

increased thrust and also produces mller nose-dam pitching m t s  

than the other devices. Ihe jet flap r h  the simplest of the 

canfigurations . 
One of the first analytic  investigations of the   j e t   f l ap  scheme 

was a two-dimensional theory developed by  Spence.' This was later ex- 

tended t o  handle the  three-dimensional problem with limitation  to 

e l l i p t i c  loadings,  constant je t  momentum coefficients, and constant jet 

deflection angles:' Several  theories seeking to  provide more generality 

have  been published. Those of Kerney  and Tokuda who employed  matched 

asymptotic  expansions to  provide a method capable of handling more general 

wing-flap  configurations and the  lifting  surface  theory of Lopez  and  Shen 5 

which offered  the  further advantage  of also providirlg solutions  for 

augmentor  wings  and  blow flaps  are  representative. Other theories which 

have considered  the ground effects problem or  provided more rapid conpu- 

tation techniques? are  now available. All of these methods,  however, 

employed approximations inherent i n  linear  theories. That is ,  a l l  flow 

angles were  assumed t o  be small. Although it might be expected that  

such  theories should be capable of providing good results  for  the  forces 

and moments on the   a i r fo i l ,  a t  least fo r  situations where the je t  f lap  

is at a small angle to   t he  free stream, or where the momentum flux is 

3 4 

6 

small,  the  accuracy  with which the downwash f ie ld  

open to  serious  question. In the  past few years, 

theories which accounted for  nonlinearities have 

could be obtained is  

two-dimensional 

been reported. 8,9 
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L x h  of the  existing  theories may adequately  account for   par ts  of 

the  overall problem, but none mzy be  expected to  be  capable of treating 

the  entire spectrum of f l ight  regimes and jet loadings, Wit11 low jct 

loadings and sufficient  airspecd,  for  exmple,  tho  field induced. by rthe 

je t  may be regarded  properly as a small  perturbation to-thc  basic 'aero- 

dynamic .field With higher j e t ,  loadings and lower airsye&,  this nlay 

not be acceptable. If computation of thc clownwash f ie ld  near aircrane 

members such as  the t a i l  surface is t o  be required,  along  with  forces and 

moments  on the wing, additional  care in the treatment of the je t  is re- 

quired. And there are regimes of f l ight  demanding yet  other  factors, 

such as  consideration of the ground plane, be included in the  theory. 

The analysis  described  herein is intended t o  handle the  situation 

where the induced  aerodynamic f ie ld  of  the j e t  is not small i n  comparison 

with  the normal  aerodynamic f ie ld  of the  vehicle. I t  is to  apply t o  

wings with je t  f laps of either high or  low loa6ings and offers the 

additional  benefit  of improved  downwash computations. 

Formulation of the complete inviscid, incompressible,  three-dinlen- 

sional je t  f lap problem is formidable. Even i f  the thin sheet  approxi- 

mations are employed, it is still  necessary to  apply a nonlinear boundary 

condition a t  the jet  boundary, the  position cf which m u s t  be detemined 

in the  solution. It is essential ,   therefore,   to  eqloy  hrther  simplifi-  

cations in ord'er t o  obtain a solution  for  the  nonlkear three-dimensional 

problem. It was considered  important t o  account for  the  position of the 

vorticity  associated  with  the  jet,  departing  substantially from the plarle 
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of the   a i r foi l  in the  f l ight regime of intcrest. lflml rollup of  tho 

jet sheet may be neglected, as it is herc, it is ncccssary t o  intrducc 

either an approximation for  the spmwisc geometry of the jet or the 

functional form of the spanwise distribution of vorticity in the j e t  . 
me lat ter  offers  significant  sinplification of thc theory mc~ was cllosen 

in this  theoretical  model. .The. st rew.isc   var is t iqn . of the  ,dcfl~xtion 

of the jet sheet remains to  be solved as an important elenlent in  the 

solution. The specific assumptions and approximations made in  the  pre- 

sent theory, are discussed in Chapter 11 along with a general discussion 

of the  solution procedure.  Chapters 111, IV, and V are concerned with 

the detailed development of  the  theory. The theory is then  applied t o  

a number of situations and compared with a few  of the  linear  theories  as 

well as the experimental results of Williams and Alexander" in Chapter 

VI. Chapter VI1 concludes  with  a  discussion of the  strengths and weak- 

nesses of the  theory  as w e l l  a.s areas of possible  further  study. 

11. FORMULATION OF THE  ANALYTICAL  MODEL 

A theoretical model attempting t o  represent  the  fcrces, moments, 

and induced aerodynamic f ie ld  in the  vicinity of an a i r fo i l  equipped 

with a jet f lap  m u s t  represent  the j e t  reasonably  well  within a few 

chord lengths of the wing. This was an accepted premise of the  analysis. 

By virtue of the dominant streamwise momentum flux of the  je t  in the 

near f ie ld ,  the roll ing up process of the streamwise vorticity iq the j e t  

sheet plausibly could be neglected in the  near  field  regicn. But the 

position of the jet sheet was retained as an important element in the 
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theory even though the  precise spanwise geometry would not be represented. 

It is th i s  feature which primarily  distinguishes  the  present  theory from 

the linear theories. Viscous effects are horm to contribute  to  the 

induced f ie ld  of the jet, but  they are neglected  along  with  compressibility 

effects which play a role  in the flow  within  the jet. The entraipent  

properties of the je t ,  however, could be  added to  the  theory  with little 

diff icul ty  . 
Even neglecting  viscous and compressibility  effects from the  outset 

in contemplating a theoretical model for  a je t   f lap,  an intractable,  three- 

dimensional, inviscid problem in  aerodynamic theory remains. I t  would be 

necessary  to  obtain  solutions  for  the flow  within  the jet   ( the internal 

flow problem)  and the  external aerodynamic f ie ld ,  subjec t  t o  thc pressure 

(dynamic)  and kinemtic boundary conditions a t  the  interfaces between the 

two flows. These interfaces could be expected to  be highly convoluted 

sheets of semi-infinite extent. The geometry of the sheet is not known 

in i t i a l ly  and muld have t o  be obtained  as part of the solution. It is 

essential   to introduce  further  assunptions t o  obtain a tractable problem 

with an appropriate  reduction  as t o  what may be expected of  the  theory. 

breover,  for  the  Wormation sought in the  analysis  (forces and moments 

on the   a i r fo i l  and downwash data), a precise  solution of the complete in- 

viscid problem muld seem unnecessarily  detailed and unwarranted. 
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.. 

A. Principal  Assumptions 

The principal assumptions in the formulation  of  the analytical 

d e l  may be outlined  conveniently as follows. 

1. The flow f ie ld  is assumed t o  be inviscid and incompressible. 

The inviscid approximation, as in most aerodymnic  theories,  sacrifices 

the capabllityy of acccr;?tirg f ~ r  E;c~dry layer phezmerz scch 2s c k b  

f r ic t ion on the a i r fo i l  surface and anticipation of separation phenomena. 

These phenomena  may be treated in a separate manner, given the  basic 

aerodynamic flow f ie ld ,  as in more conventional  aerodynanic problems. 

' b o  aspects of the  inviscid approximation relevant t o  the j e t  flow which 

could be of some importance in the  je t  f lap  problem are the  viscous en- 

trainment by the je t  and the growth of the j e t  thickness by virtue of 

mass and  momentum exchange with the  external flow. ?he former is l ikely 

t o  be most important. The aerodynamic f ie ld  inducecl by viscous cntrnirr- 

ment could be accommodated  by employing a suitable  distribution of sources 

and sinks in the  inviscid model. This is l e f t  for possible  extension of 

the  present theory. Under the  conditions of highly loaded flaps, the con- 

tribution should be a s~nall one. Cornprcssibility may be of significance 

in some parts of the jet flow and possibly in the concentrated  vortex 

cores of the wake. Considering the facr. that  most of the je t  is in a low 

subsonic  flow regime and that  the near f ie ld  is of more importance than 

the dis tant  wake, compressibility should  not exert a significant  influence 

on the results. For higher  freestream  velocities where the aerodynamic 

field might be locally compressible,  compressibility could possibly be 

accounted for by employing the GGethert rule. 
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2. The a i r fo i l  and the je t  Slap are 'assumed t o  be symmetric about 

a plane  containing  the.undisturbed  freestream  velocity  vector. This is 

an essential  part of the  analysis; more general geometries would require 

a much  more elaborate  qalysis.  

3. Airfoils equipped with  both f u l l  span and part  span j e t   f l aps  

with  constant j e t  momentum coefficients and.which issue from a s t ra ight  

t ra i l ing  edge are  considered.  Variable  distributions of the je t  xomentm 

coefficient would be  admissible in the  basic  theory,  but such situations- 

were not  considered in the computations. 

4. The th i chess  of  the wing is neglected; however,  camber and 

variations in the wing planform are  included. This procedure fol.lows the 

usual  - thin  airfoil  approximaticn in aeroclynamic theory. The resulting 

force system on the  a i r foi l  may later he mnr l i f id  tn  a r rn l r~ t  i%r t he  

thickness  effects of the  a i r foi l  in an approximate mmer by mploying 

a modified l i f t  slope as in i t ia l ly  used by  Spence' and discussecl in 

greater  detail by L i ~ s c u n a n . ~  Furthennore, such effects also might be 

represented by a suitable  distribution of sources  along the  surfaces 

used t o  denote the  airfoil .  

5. Several approximations are introduced pertaining  to  the  repre- 

sentation of the jet .  

[a) The thickness  of  the jet  is neglected, and the   je t  momen- 

tum coefficient is takm t o  be constant.  Interaction between the jet  

and the  external  field then arises  solely from the normal force due t o  

pressure  differences  across  the jet  sheet. The jet is assumed t o  have 

no spanwise component of velocity. 
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@) Rollup of the  jet   sheet  at  i t s  edges is not considered. 

This may be of importance for  l ightly loaded j e t s ,   a t  high  freestream 

velocit ies,  or f a r  enough  downstream.  For the situations of interest 

here, however, the  rollup is l ikely  to  be delayed t o  a point  far enough 

downstream t o  be of l i t t l e  influence on the  results. 

(c) The vorticity  associated with  the j e t  is assumed to  l i e  in 

a sheet  generated by a system of straight  lines normal to  the  free stream 

direction  (refer  to Figure 2a)  and tangent. t o  the  actual  jet   sheet  at  the 

plane  of  s)metry. The position of the stream surface  associated  with  the 

jet may not be composed of straight  l ine generators,  as  indicated in  Figure- 

2a, but this arrangement does place  the  vorticity  close  to  the  actual 

surface, an important factor when the   j e t  lies significantly below the 

plane  of  the wing. 'I3e small difference between the  actual  jet  sheet and 

the  sheet on which the singular.itj.es  are placcd  should  not cornprornisc 

&e s o l t i t h i  Li z 3bLIuUJ ---:-**- - o - ~ - T .  LILCLLuLbL , U - I I I A U L  C ; m i l q r  -.I nvnrnyirnntion.; r- ____.._ have with 

ample success in conventional aerodynamics-. 

(d) The la teral  (spanwise) distribution of the spmwi:;c com- 

ponent of vort ic i ty  in  the jet  sheet is ,?ssunted to  be e l l ipt ical .  lhis 

distribution falls to  zero at  thc edges of the.  j e t  in thc proper Inamcr 

and greatly  simplifies  the  theory. To be  sure, the spnwise  di.st.ribution 

in  an actual j e t  w i l l  not  follow th is  pa t t em,  but will vary in the 

,streamwise direction  leading  to  concentrated vortex  cores fa r  downstrcam. 

Nonetheless, in the  near  field of primary importance, at least ,   the 

distribution probably will have a form approximating an e l l ip t ica l  loading. 
I 
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Moreover, in view of the  neglect of the  fact  that  rollup occurs, a plausible 

assumpticn of this   sor t  remains consistent w i t h  the framework of the 

balance of the model. It should be observed that employing such an as- 

sumption for  the spanwise distribution of the vortex strength is tanta- 
mount to  specifying  the  lateral geometry of. the j e t  and it is far  more 

effective in simplifying  the  theory. One or the other must be given if 

rollup is neglected.  In  order t o  provide greater care in  modeling the 

jet while retaining convenient working equations,  the fonner was chosen. 

The merit  of this assumption ultimately may be tested, of course, by 

comparisons with  experimental  data. 

6.  Certain assmptions  are made as to  the mathematical cmver- 

gence of the  solution procedure. This method  amounts to  (a) start ing with 

a. first approximation for the flowfield of the wing alone from an ele- 

mentary linear  theory, (b) solving  the j e t  problem subject t o  the free- 

stream and the  disturbance  field of the wing alone, and (c) employing 

the jet  solution so obtained,  together  with  the  undisturbed  freestream, 

zs thc zxtz=~.,cLlly L z ~ c s d  field IG a wrc? complete solution for the 

disturbance  field of the wing. If these l a s t  results prove unsatisfac- 

tory, the procedure may be continued,  obtaining a new j e t  flow, ctc. 

It is assunled this  procedure does converge to  a Solution. 

7. In computations involving  the  influence of the disturbance 

f ie ld  of the  airfoil,   the  vorticity in the wake of the  wing alone is 

assumed t o  l i e  in the  plane of the  surface used to  represent the a i r fo i l  

in a manner siqilar  to  existing  lifting  surface  theories. For a l igh t ly  
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,. . loaded wing and in the  region  close  to the airfoil, t h i s  vorticity will 

have a.primary  effect of distorting  the  jet  sheet  laterally. Because 

t h i s  effect is not  a primary consideration, and since  the  influence  of the 

disturbance  field  of  the wing is small compared with that  of  the  free- 

stream . .  for  the  jet  solution, such a contribution  fiight be reasonably. 

. neglected  altogether, However, the wake vorticity is retained and treated 

in the above manner because it does result  in simpler  equations. A more. . 

,accurate accounting of the  vorticity shed by the wing  would add signifi-  

cant complication to  the  analysis  unless some assumptions as t o  its 

position could be made - a pr ior i .  That part  within  the spanwise extent- 

of the jet  presumably would follow  the j,et contour. But that   near   the 

wing t i p s  would l i e  somewhere between the  plane of the wing and the 

location  of  the  jet  for an a i r fo i l  equipped with a part span j e t  flap. 

B. Mathematical Formulatiom 

The coordinate systems employed in the  analysis, along with  the: 

principal geometric  parameters  of  concern are  illustrated in Figure 2. A 

right-handed  Cartesian  coordinate system is employed, taking  the  x-axis 

along the direction of the freestream  velocity, the y-axis  along the 

intersection  of the a i r fo i l ' s   t ra i l ing  edge  and the j e t ,  and the z-axis 

in the  vertically upward direction. For some computations in the j e t  

analysis it is convenient t o  employ an orthogonal, - curvilinear coordinate 

system located  within  the j e t  sheet: 5 in the streamvise  direction, r l  in 

the spanwise direction, and normal to   the  sheet. 



Referring t o  Figure Z.b, the two principal  angles  are  defined in 

the cross sectional view. The angle  of  attack (CY) is the angle measured 
from the x-axis to  the chord l ine and the  jet  deflection  angle (T) from 

the chord l ine  to a l ine  which is tangent t o  the j e t  as it leaves the 

t ra i l ing  edge of the a i r fo i l .  The notation  pertinent  to  the-span  lengths 

and the wing chord are  also shown ir, the figure. 

The positions of the  physical elements employed in the problem, 

the je t   sheet  and the  (thin) wing, are shown in bold outline in Figure-. 

2a. The locations  of  the  sinplarit ies used t o  represent  these elements 

are shown in lighter  outline. The singularities used t o  represent the 

airfoi l   surface  are  placed in the z = 0 plane in an area  corresponding 

to   the  planform of the wing.  Those for  t he  jet  are  positioned on a 

surface tangent to  the  actual jet  sheet in the plane  of symmetry (the. 

y = 0 plane) having straight  line  generators  (parallel t o  the  y-axis) 
, 

as  already mentioned., 

Given a specific wing planform and camber distri5uution,  together 

with ' the span length of the  jet   f lap,   the necessary  parameters for this!. 

problem are r 

(a) the  angle of incidence  of  the wing (a) 

(b) the  freestream  velocity (v,). 

(c) the angle of deflection of  the j e t  (T), and 

id) the j e t  mnomntwn coefficient L L ~ I  . m -$ 

The objective of the  analysis,  then, is t o  obtain  results fo r  the forces 

and moments on the airfoil, and the  velocity field at points of interest 
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with respect  to  the  airframe  desi= (e.g. , the downwash i n  the  vicinity 

of tail surfaces) . 
1. General Relations 

Within the framework of the assumptions discussed above, the 

analytical problem  amounts t o  one of the Neumann type in' potential theory. 

The flow is everywhere irrotational auld solenoidal*  giving rise t o  a 

representation of the  f ie ld  in terms of a scalar  potential. The n o m 1  

derivative of the  scalar  uotential 011 the  airfoil  and  on the  jet  sheet 

must be zero;  these are stream  surfaces. The great  difficulty of the 

problem arises from the  fact  that  the  position of the jet   sheet is not 

hotm in i t i a l ly  and  must  be determined in  the  solution. This requires 

matching the  pressure  difference  across  the  sheet  with  the normal 

acceleration of an element of f luid in the  je t  (dynamic condition). 

The relations  required in the  theory may be obtained from the 

Fundamental Theorem of Vector Analysis  (Helmholtz's Theorem) . Re- 

ferring  to Figure  3a,  consider for  the moment a closed, singly connected 

domain surrounding the wing and j e t  and containing  both  (the domain en- 

visioned  here is large enough to  contain even the'starting  vortex of the 

system).  Define the  perturbation  velocity 3 in the  usual m e r  

11,12 

3 3  + v = V  -Urnex 

where 9 is the complete velocity  vector. Then 

~ 

A 
~~ ~~ 

excluding the  singular surfaces  represeniing  the wing and the jet .  
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where 

R = = Y(x-x1)' + (y-~')~ + (z-z')~ 

In these  relations,  integration is with respect  to  the source  coordinates 

(;I) and the  potentials 4 and A are  functions of the f ie ld  point g- 
Combining the above equations a general  relation may be  obtained f o r  t h e  

vector v *13 

S represents  the  surface bounding the  region T and represents the unit 

outward normal of S, 

A h 

A 

The vector f ie ld  of concern is solenoidal (V v = 0 everywhere) ; 
-+ 

A 

ct u I ~ L e L o l ~ ,  - II " the first term of E c p ~ t i ~ r ,  (1) .. is zero, For a d ~ m i r ,  T l ~ r g e  
h 

enough, 3 is zero at  every point on the surface S ,  Then the vector field 

is entirely given within  the domain as 
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This situation, of course, is not  quite what is needed for  the 

problem at hand. Rather, one is interested in a part of the donlain in  

which the flow and j e t  geometry are  stationary in time, a domain con- 

tained within, the one described above' and far  enough removed  from the 

time varying starting  vortex  region so as not t o  be influenced by it 

(refer again t o  Figure 3a). From the  foregoing  discussion, it should be 

clear that  the  velocity at a point of interest  within  the  inner domain 

w i l l  be determined a s  the sum of two integrals of the form of Equation (2) : 

one  over the  inner domain and one over i ts  complement. Since  these re- 

gions may be chosen fo r  our  purposes t o  be as large as desired, the con- 

tribution of the second integral t o  field  points of interest  within  the 

inner domain (not  too  near the intersection of the  jet  sheet  with  the 

boundary of the domain) can be made small enough to  be inconsequential 

in the analysis. Equation (2) , then, may be written as 

Now, the vorticity in the domain of interest is assumed t o  be con- 

centrated in the form of vortex sheets." These singular  sheets are re- 

la ted   to  the actual  distributed  vorticity  regions by introducing the 

vortex strength of the  sheet, 7, such that (refer  to Figure 3b) 
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&ere is the vorticity  vector [$ = V x c) and the element of area S 

lies in a vortex  region of thichess t. It may be sl10;m 14y15 that  the 

strength of the vortex  sheet is related  to  the  vector  difference of 

velocities on either  side of the sheet 

where is a unit noma1 t o  the  sheet and v (v. ) is the velocity vector 

above  (below) the  sheet. Enploying the  definition of Ty the  velocity 

field  v(x> may now be e?cpressed in the form 

-t+ +- 

+ +  

where S now represents the to t a l i t y  of vortex  sheets within the domain- 

of interest. Equation (4) is the  starting point of t h i s  analysis as .it 

is for most other problems in aerodynamics; 

The problem now is to determine the vortex strength distribution. 

on these  sheets so that  the flow is everywhere tangent t o  them. Suppose- 

for the moment the  sheet  positions may be described in the foxmy- 

f(x, y) - 2 = 0 

The kinematic  condition of tangency  then becomes: 

f * V ( f - t ) = O  

or 
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Furthermore, since 3 must be  solenoidal and since by definition it lies in 

the vortex  sheet, it has only one independent componcnt. Equations (4) 

and (51 then  provide  four  equations  for  the  variables u, v, w and, say,. 

yY . 11: the  positions of the  vortex  sheets were known, then, by substitu- 

t ion of Equation (4) for  u, v, and w, along  with a rclation bctwccn yx 

and y obtained from the  solenoidal  character oE 7, into Equation (5) a 

single  integral  equation over a two-dimensional sheet  results for the 

determination of y In view. of  the assumption t o  be made as t o  the 

spanwise distribution of vorticity,  the  condition given by Equation (5) 

may be met a t   the  plane of symmetry  where the  shcct  of s i n m a r i t i e s  

and the stream surface of the jet  coincide.  Application  of Equation (5) , 
star t ing a t  the t ra i l ing edge of  the a i r fo i l ,  may then yield the fonn 

of  the  actual  jet  sheet  at  points not in the  plane of symmetry. This will 

not, in general,  coincide with the  sheet of singularities  representing 

the  vorticity of the  je t   ( refer  t o  Figure 2) . 

Y 

Y .  

The location of the  vortex  sheet  associated  with  the jet  un- 

fortunately is not hown in i t ia l ly .  bioreover, the jet sheet must be 

positioned such that  the  pressure  force  acting on it balances  the  local 

normal acceleration  of  the flow within  the jet .  This dynanlical condition, 

then,  provides  the  necessary  additional  relation  for  the  determination of 

the  position of the je t  sheetc 

Consider a je t  sheet  generated by straight  l ines such that  it has 

only one finite curvature and with its normal vectors  lying in planes 
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parallel   to the x-z plme. Applying the momentum theorem of fluid. 

mechanics t o  an element of the jet  sheet, it may be shown simply.that" 2 

where K represents the curvature of the jet sheet, p @-) is the  pres- 

sure above  (below) the  sheet, and J is the momentum flux of the jet  per 

unit  length of span. This relation may be placed in a more suitable form 

as follows. By employing Bernoulli's  equation along with .Equation (3) 

the  pressure  difference  across  the j e t  m y  be written 

+ 

where 

is the mean velocity a t  a point  located on the  jet  sheet.  Utilizing the- 

definition  of  the je t  momentum coefficient 2 

the dynamic condition may be written. in the form 
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By definition, the curvature is related  to  the geometry of the. jet sheet 

uhder cansideration through the relation. 

where  the surface in question is given by the  relation 

f(x) - 2 = 0 

This form of the dynamical condition is t o  be satisfied  at   points on the 

jet sheet in the plane of synunctry  where the jet  sheet  coincides  with 

the  sheet of singularities representing  the 3 e t  vorticity. This condi- 

tion is not met s t r i c t l y   a t  any other  point on the  jet   sheet,  of course, 

within the approximations  involved in the  analysis. This is again a 

consequence of the nedec t  of rollup in the theory. 

Equations (4) c5) and (6) provide the b a s i c  relations from which 

the vortex strength  distribution and the  position of the j e t  sheet may be 

determined. An i terat ive procedure was adopted for  that purpose in the 

~ l y S i S .  

2. Nethod of Solution 

me solution procedure  adopted for  the  analysis is most conveniently 

presented by considering  the  perturbation  velocity  field on the   a i r fo i l  

and the jet separately. Employing equation (4) the  required  relations 

rrrry be expressed. a s .  
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where the  subscript J (A) refers  to  the je t  (airfoil) .  Equations (7) and 

(8) provide a set of coupled equations for  the  vortex  strengths on t h e  

a i r fo i l  and the jet. They are analogous in some respect  to  the  bi-plane. 

problem. In choosing a method of  solution fo r  th i s  probl.ern, it is hel.pfi~L 

16 ' 

to keep i11 I I ~ K I  iile p J I l y ~ i ~ i i  coiiditiciis GE ~T~TGTJ* L y t ~ r ~ s t .  ?he ~ E C Z Z C C  

of the disturbances produced  by the wing on the j e t  (represented by the 

first surface  integral  in Equation (7)) may be expcctd  to  he small con- 

pared with  the  interaction of thc je t  and the  freestrerun for  thc  f l ight 

conditions of interest, whereas the  reverse is not true. The je t  inclucd 

disturbances  (represented by the second sur€ace  integral of  Equation (8)) 

should have a significant  influence on the wing f ie ld  for a  highly loaded 

j e t .  

A solution f o r  th i s   se t  of equations may be obtained as follows. 

(a) A solution for  the wing alone is obtained as a first approxh-  

t ion  for   the use of modeling the influence of the wing  on the jet in 

Equation (7). This may be as simple as a l i f t ing   l ine  approximation o r  

a more detailed  solution if  readily  available-. 

(b) A solution fo r  the. jet  is obtained  subject to  the  influence of 

the combined f ie lds  of the wing and, the freestream. This solution corn-. 
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prises  obtaining the distribution of the  vortex  strength along the jet 

and the  position of the je.t sheet *. 

(q) The jet   solution and the  freestream  are  taken as a new imposed 

f ie ld   for  a detailed  solution  of  the wing problem. The solution pro- 

cedure employed herein is of the  lifting  surface type, 

Given t?.?ese results, the forces a d  moments on the wing ray be: 

obtained by direct  integration, and the  velocity  field  at  points of 

interest .in the  vicinity of the wing o r   j e t  may be computed as needed, 

Should the results for  the last wing soluti.on prove inaccurate, it is 

possible t o  employ that  solution as a new in i t ia l  approximation and 

repeat  the  entire procedure. 

3,~ ~;alysis  of +,he ,"L ;a+ d c&;nr+ ,-." tc t ? ! ~  i~f l : !c~lcp ~f tile f'yr?r?<trmrn 

and the  disturbance  field of the  airfoil  may be referrcd t o  here as the 

jet  problem.  That of  determining the ; . ~ ~ I : O ~ Y ~ K U I ~ ~ C  field  of the wing sub- 

ject to  the  freestream and the  field ,of the j e t  may be ternml t.hc "" a i r fo i l  

problem in  the following  treatment. 

3 .  Working Equations 

A solution  for  the  jet problem requires  determination of the dis- 

tr ibution of vortex  strength (TJ). on the  jet  sheet as well as the  loca- 

t ion of the   j e t  in  the  plane of symmetry (z = f,(x,O>). For a given fJ, 

obtained  either by an i n i t i a l  assumption or from the results of a previous 

iterate,  the  vortex  strength may be determined by satisfying  the kine- 

matic condition, 

(9) 
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where 

and SA accounts for the influence of the downwash field  created by the  

a i r fo i l  on the  je t .  The proper solution is one which also satisfies 

the dynamic condition 

An i terat ive procedure is adopted for  varying fJ (x) so that Equation (11) 

is met in  the  solution, along  with  Equations (9) and (10). 

In a similar manner for  the  airfoil  problem, a solution for the 

vortex  strength  distribution of the  airfoil  (qA) may be found by applying 

tho kinematic condition 

where 

t o  the location of the projection of the airfoil on the z = 0. plane. In 

the above equations 
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represents  the  surface of the a i r fo i l  and GJ accounts for the downwash 

field  created by the jet on the  airfoil .  

111. J E T  ANALYSIS 

Consider now the problem of determining the vortex  strength distri- 

bution and the  location of the  jet  sheet, subject t o  the influence of 

both  the  freestream and the  disturbance  field created by the a i r fo i l ,  

For present  considerations,  the  field induced by the  a i r foi l  will be 

assumed t o  be known. 

Recalling  the  curvilinear  coordinate system (5,n) located in the 

jet sheet,  the  vortex  spength  distribution  associated with the jet may 

be expressed a s  

Since  the  vorticity  field is solenoidal, yJE and yJn are related through 

the  relation 

or 

The assumption that  the spanwise distribution of 'loading on the j e t  has 

the scme functional form a t  all s t remise   pos i t ions  along  the jet implies 

that  the components of the  vortex  strength may be represented i n  terms 

of products of the form 
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then 

Defining 

the equation for  y may be written 
Jrl 

If the loading on the   j e t  is t o  be e l l ip t ic ,  as discuss;?, e z l i e r ,  

and then 

The choice of an e l l i p t i c  loading provides the primary adv,mtage of 

simplifying some of the  integrals in the subsequent  clunents of the 

theory, and does have the proper characteristics a t  the edges of thc jet.. 
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A. Integro-Differential " . _" Equations  for  the  Jet  Problem 

1. Analytical  Relations 

Recall first the relatians  given by Equations (9) to (11) 

where these  relations  all  pertain t o  field  points  located on the  jet  sheet 

in the  plane of symmetry (y = 0). Then 

since v =' 0 in- this  plane. And 

It has been determined that.integrations  carried out with rcspcct 

t o  x and y rather than E and n are most convenient. lhe Cartesian pora- 

meters  involved may be expressed as 

33 



and, referring to Figure 3 

Then the ca~yonents 01 Eqmtion (16) a k c  the form 
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Introdr*.cing Equations (14) and (15) for y and y into Equations JS Jll 
(19) through (21), 

yJx =t H/[l ' [&) ] d f  2 1/2 

Y;Jz - G H 

and let  

Then since dG = a dx = dg cos 8 ,  Equations (22) and (23) may be written d5 dxz dx 

00 sJ 

-sJ 

u(x,O,z) = u.(x,O,z) - 1 I g (2 - fJ') dx' y + 
0 

and 
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00 sJ 

-sJ 

w(x,O,z) = WA(X,O,Z) - &  I g ' d x '  1 y y +  
0 

m sJ 

The integrals with respect t o  y 1  may be evaluated directly  (refer t o  

Appendix A) t o  yield 

. ..kJ 
.'d& ( Z - f J 1 )  7 [E(kJ) - 

kcJ 

where 
2 S 

k; = J 
sJ + .(x-xl) + (7, - fJ ' )2  

kJ 2 + kd2 = 1 

36 



and K, E are the complete e l l ipt ic   integrals  of the first and  second 

kinds, respectively, with modulus k. 

The dynamical condition given by Equation (18) may bc written in 

the form 

since, in the plane of synmletry 

where 

um = 2- gr + U') 1 +  

and 

'm - z - (w+ + w-) 

as discussed  previously. 

The kinematic  condition, Equation (17), may be written simply as 

Equations (29) and (30), with u and w substituted from Equations 

(26) and (27) represent a pair  of nonlinear  integro-differential  equations 
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for fJ(x) and g ( x )  . The je t  location apd slope are hewn a t  x = 0. The 

function g must display the proper  behavior; that is 2 must vanish a t  

i n f h i t y  as well a s  having a logarithmic  singularity a t  the  origin  of 

the jet. lhis system of  equations is to  be solved  numerically for  these 

functions. 

2. Forms of the Equations for Numerical Solution "- 
The  method adopted here for  the  solution of the  equations  dis- 

cussed in the  previous  section is related  to  the  integral methods of 

fluid medmics . 17,18s19 The functions fJ. and  g are represented by 

truncated  series  with  coefficients  to be determined i n  the solution. 

These functions are chosen to  give  the proper  behavior fo r  large x 

and t o  meet the  appropriate boundary conditions. The semi-infinite do- 

main, 0 < x < c~, is divided  into two regions, a near f ie ld  0 < x < x and 

a far f ie ld  extending beyond x. Tne functional  represmtations in the 

near f ie ld   a re  of primary concern here. Those in the far f ie ld  were 

chosen t o  facilitate integration  in  that domain; the choice there is not 

A 

" " 

h 

particularly  cri t ical  in the  solution  since  contributions  to  the  inte- 

pal s  from that  region are small if x is large enough.  Choices for x 
A h 

in the computations of 5 t o  1 0  wing chord lengths were  found to   y ie ld  

satisfactory results. The  optimum choice depends on the parameters of 

the problem, such as CJr. This  subject w i l l  be discussed  further in con- 

nection with the computational results.  

It  may be anticipated  that y w i l l  decrease monotonically with 
JY 

increasing x, as it must ultimately approach zero. Xmxowr, the  fmction 
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I I. . 

dg/dx should dkplay a logarithmic  sin,darity at the  origin  as  suggested 

by the  two-dimensional  theory of Spence.’  The  choice  made in this ana- 

lysis is a series  of  exponentials  such  that 

so that 

The  factor 6 is a parameter  chosen  along  with x for a particular problem 

to  best  represent  the  function  over  the  near  field domain. A value of 

A 

6 between  unity and 10 appeared  to be suitable  for  most  of  the  computa- 

tions  attempted. This functional  representation  is  retained in the corn- 

putations  extending from x = x to  infinity as well as in the near field 
A 

region. 

The  function fJ(x) was chosen to  have  the form 

(F + 1) + a. + + ... + al 
J- (F + 1) (F + 1) 

(331 

where K = vx/s and v is a scale  factor.  Values .of v found to  yield 

I 
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acceptable results in the computations atteriipted were iwa  range from 

1 t o  10. Since the je t  passes through the  origin, it is required that 

M 
c a m = O  

m=-1 
(341 

Employing Equation (33) , the  slope given by 

must agree  with  that  specified in  the problem a t  x = 0. Thus 

There  remzin M free  coefficients in the  function t o  be determined in the 

solution. 

Now, while the form of Equation (33) was  employed f o r  the j e t  in  
h 

the near field  region x - < x, it was not employed to  represent  the  jet for 

x > x. There the jet  sheet was taken simp1.y t o  have  a constant  slope, 

matching the  value  of  the  near  field  function  at x = x. This reprcsen- 

h 

h 

tation is not  precise, of course,  but  simplifies  the  integrals  considerably 

and should not  seriously  detract from the  merit of the  solution. Con- 

sidering  the  inviscid problem,  where the  sheet would be allorfed t o  ro l l  

up, the resulting  trailing  vortex  pair would  have a constant  slope,  apart 

from viscous  interactions. 
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Given  the above functional fonns for g and fJ,  the  final  forms of 

the equations  discussed in Section  1 may be written as 

and 
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where Urn, Wm i n  Equation (29) are now given  simply by U,W with the under- 

standing that these  are  the  values computed excluding a suitably small 

region in  the  vicinity of x in the  integrals of  Equations (39) and (40) .* 
B. ,Method of Solution 

Equations (37) and (38), upon substitution of u, w and K from 

Equations (39), (40) and (41) comprise a  pair of integro-differential 

equations for  the fimctions fJ and g. Ehploying the approximate forms 

for fJ and g, these equations bccorne a pair of algebraic  equations for 

the M + N coefficients  in  the  solution. With a finite number of terms, 

M + N here, it is not  possible, of course, t o  sat isfy thcsc equations at 

all p o h t s  in the  semi-infinite  region 0 - < x < ~1. The eqwtions could 

be satisfied  exactly only a t  z (M + N) points a t  most. Rather than re- 

quiring the  equations to  be  met precisely  at  the (M + N) points, it is 

advisable t o  meet the  relations  in  a broader  sense  over the domain. This 
is accomplished' in  the  analysis by requiring the. equations to  be satisfied 

in a least  squares  sense over the  near  field domain 0 " < x < x, subject 

t o  values a t  a larger number of  points. 

1 

1 

A 

The numerical analysis employs a  set  of control'  points spanning 
h 

the  near  field domain 0 " < x < x. The  number of such points. is chosen' t o  

'* 
A region small enough such that its contribution to  Urn'= is 
negligible. 

u+ + u- 
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be several  times  the  value .z of + N) such that  the  least  squares  me- 

will  yield  smaoth  fimctions fJ and g, and so that  infonnatim of. the 

necessary  resolution within the  domain  is  represented. 

1 

The  procedure  employed  for  the  solution.is an iterative  one. It 

may be  outlined as follows. 

(a) A trial  function K(X) is  first chosen. K is arployed as 

the  primary  representation of the  jet  rather than fJ, be- 

cause  it is of primary  importance in the dynamical condition 

and  it is more  sensitive  than fJ or  dfJ/dx.  hnploying IC 

at the control  points, a first  integral  obtained  numerically 

.yields. dfJ/dx at  the  control  points.  These  values are 

employed  to  find  coefficients  in  the  expression  for fJ which 

yield a least  squares fit for  dfJ/dx, fJ and dfJ/dx are  then 

evaluated from this  function  at the points  employed in ob- 

taining  the  necessar)t  integrals. 

@) These  values for  f arid dfJ/dx  are  employed t o  calculate  the J 
coeff-icients of the Cn in Equations (39) 'and (40) a t  each 

control poht. Substituting  the  results into Equation (38), 

the  dynamical  condition,  the Cn values  are  obtained so as to  

meet that condition in a least sauares  sense over the  domain. 
cc) Finally,  new  tralues'  for dfJ/dx are  obtained  at  the  control 

points. through Equation (37). The  curvature  corresponding 

to  this  new  distribution of dfJ/dx  is  then  estimated.  These 

are  compared w i t h  the  starting  values and a new  iterate K(X] 
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is generated. When IC (x) values  obtained in two successive 

iterates agree  within a given error bound a solution is 

formally  obtained fo r  the problem. 

The scheme described above is not  the  only one possible,  but i t ' is  stable 

and converges rapidly. It would be possible,  for example, to  employ' the 

l inear tangency condition in -step (b) rather than the dynamical condition, 

for evaluating  the Cn. * Then the dp-amical condition would yield  the new 

IC i terate  directly.  I t  was found that   th is  method is not always,stable. 

Halsey fomd  similar  results in a tm-dinensional  theory. 9 

I V .  NUMERICAL ASPECTS OF THE J E T  PROBLEM 

The integrals  to be evaluated  numerically in  the analysis require 

careful attention in several  respects. They are  discussed.together  with 

the numerical integration scheme in this  chapter. The relations employed 

for  evaluating  the  coefficients Cn in step (b) of the iteration scheme 

are  then summarized. A description of a method of evaluation  for  the 

start ing values and the new j e t  function is then  given  followed by a 

discussion of the procedure  adopted for  generating a new i terate  K(x). 

A. Evaluation of the Integrals 

The complexity of the  integrals involved in the equations Cor 

the  velocity  field  requires that they be computed numerically. Three 

difficult ies  arise in t h i s  connection: 

1. singularity of terms in the integrand a t  x'. =I x, the con- 
t r o l  point 
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2. infinite upper bound 

3. singularity  at  the  origin caused by the 1ogaritluni.c t e m  in 
the.  vortex  strength expansion 

1. Singularity  at  the Control Poirlt - .  

A t  the  point x' = x, the modulus of the complete e l l ip t ic  integrals 

@cJ) becomes unity and the  elliptic  integral of the first kind becomes 

infinite.  This presents  the problcm of numerically integat ing through 

a point in which  some of the terms of the  integrand arc singular, O f  

course,  the  integral is f ini te .  I t  is possible  to circumvent this 

diff icul ty  by applying the  identit ies 

. z  . -  fJ' 1 
J 

x - x' 'J. 
L 

2 = z  
kJ 1 + ( x - x' 

S 
2 

x - x' 1 1 J .  
x -x' 2 =z - 

kcJ J 2  kJ 1. + [ ;) (4 3) 

kJ - 
- kcJ sJ (43) 

Inserting Equations (42) through (44) into  the  integrals under considera- 

t ion results in the expressions 
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I 

1 N kd (K - E) 
U(X,0,fJ) -- UA(X 0 f 1 -- cn "J + 

n=l [i + [ zx--fx:) J 2 ] ''' 

and 

z - fJ' 
x - x" 

1 E - kd2 K 1 
5 

nu ' 
x - x' ( $ 5 )  

Since 

lim 
k+l kc (K - E) * .O 

lim E - kc2 K 
k+l k * 1  

and 

the expressions within the braces of Equations (45) and (46) are con- 

tinuous and non-singular in a  small  neighborhood.of the control point 

CX'. " x ). These tenware plotted in Figure 4 as fi and fi, respectively. 
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The associated  integrals may be written as Cauchy principal values, 

f. (x') 
; i = 1,2 

in a neighborhood of x' = x. It is then  possible t o  expand fi(x') In 

powers of '(x - x') within th i s  neighborhood and t o  perfornr'the integration 

analyticaiiy. BY choosing E and E t o  be smaii enough, th is  expansion 

may be truncated t o  fourth  order in (x - x @ )  'without loss of accuracy (refer 

t o  Appendix F). In any event the  contribution of this  element t o  the 

- 
1 2 

total   in tegral  is extrcmely  small. 

The problem of numerically integrating to  infinity may be removed 

by employing a change in  variables. A natural candidate. for  this  task 

is the modulus of the  ellpit ic  integrals kJ. From Equation (28) it can 

be  seen that 

2 
&' = sJ *J 

(X.. x') + x, dfJ (Z - fJ') ;c3 J 
(47) 

By employing Equation (47) an integral over the range x c x' < 00 may be 

transformed into an integral  with  respect  to kJ over the internal kJ - c 

A 

- - 
A 

A A 

0 where kJ = kJ (x) . For example 
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Q) 

.. [ $ dfJ' kJ (K-E) .+  --- d%' (z-f J1) .--.= kJ 
a kcJ 

By noticing that 

l i m K  - E lim E - kc2 K 
bo F= e o  2 -4 

kZ kc 

and 

lim gn' - lim d%' ' 

x-x - x'  -x *"  e o  

it can be seen that  the resulting integrand is zero at  kJ = 0. me slope 

df /dx is taken to  be a constant  here, in accord with the approximate 

representation of the je t  in this region as discussed i n  section A2 of 

the previous  chapter. The resulting  integrand for the x ( 2 )  velocity 

component is plotted as fi (f,) in Figure 5. 

;I 

3.  Singularity a t  the Origin 

The final difficulty encountered within  the  integrands of interest 

involves  the  logarithmic  singularity at   the  origin due to   the  term dgJdx. 

Consider only the integral involving th i s  term in a small 6 neighborhood 

about the origin. 



z-fJ' E - kd2 K .1 
X-X' k, 

- 

(plotted as  fl in Figure 6) may be given their  value a t  a mean point 

d removed from the integral  to providc the resulting approximation 

fer Ep.t,iQE p q j  

A similar relation was developed for  the z velocity component (the term t o  

be evaluated a t  the  intermediate  value is plotted  as f2 i n  Figure 6). 

The integrands of Equations (39) and (40) have  been plotted a s  

fi and f2 respectively in Figure 7 for  the remaining intcrvals. 
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4. Numerical Integration Method . I  

In accord with *e factors mentioned  above, the integrals were 

subdivided i n t o   a t  most the sum of five integrals over parts of the. do- 

main of interest. 

x - E l < X '  - - < x +  E2 
A 

where 6 ,  E and are small  values chosen on the  basis of integration 

accuracy. Those integrands  not  involving  the  logarithnic  singularity 
1' 

at x = 0 were integrated  directly from 0 t o  x - E ~ ,  

Now, in order to  represent  the integrals well for  a range of j e t  

geometries, it was decided to  choose the main control points a t  nineteen 

equally spaced locations along the  je t  (AE = constant). An additional 

control  point was placed a t  A.5/2, within  the initial region of rapid 

variation of the  je t  geometry, resulting in a total  of twenty control 

points i n  the domain 0 - < x'  - < x. Step sizes for the  int-cgrations wcre 

taken, t o  be ten times smaller,  resulting in a total of 201 points in 

A 

the numerical grid. These values were  found to.givc  satisfactory accuracy. 

Numerical integration of the-  functions  with nonsingular intepands was 

performed by means of a colnpound Sinrpson's rule. 20 
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i" fCx) dx = 5 [f, + 4 (fl + f3 + 0 0 0 +. fhml 1 + 2 Cf2 + f4 + 0 . .  '+ 
.. 

X 4 
f h - 2 )  + '&I + En 

where 

h ,= - xi) = constant 

and the  remainder En is  given  by 

The indices  refer to  the  grid  points  within  the  integration  interval 

of concern.  Numerical  algorithms  for  the  cohplete  elliptic  integrals 

are described  in Appendix B. 

B. Evaluation of C 

Upon  evaluating the integrals  numerically  at  each of the cont.rc?l 

points, one has 

N 

n=l 
u (Zi) = u* (Xi) + c cn I* (Xi, 

and 
N 

n=l 
w (zi) = wA (xi) + Cn Jn (xi) 
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where xi denotes the ith control point and In [xi), Jn (xi) are now known 

coefficients. These expressions may be substituted  into  the dynamical 

condition, Equation (38) to   yield 

- +  

N N 
[- C Cn x) [(U- + uA + C C I ) - 121 (wA + C Cn Jn)J = 

n=l n=l n n  n=l 

This system of twenty equations in N unknowns (the N C,l values) is an 

overdetermined system (N w a s  chosen t o  be 6 in  the computations), The 

C values are evaluated such that Equations (50) are  satisfied in a least  

squares  sense over the domain. 
n 

The least  squares  solution nay  be obtained by minimizing the sum 

of the squares of the  residuals 

r = [Qi - T~J' 
i=l 
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Thus 

Substituting  the  expression  for Q into  this  relation  yields 

N dgn (Xj) 

'n ( tni dx = 0 - j = l ¶ . . . , N  (56) 
n=l 

¶. 

which may be solved for  the C values. n 
Equations (56) comprise a nonlinear system of algebraic  equations 

for  the N values  of  the  coefficients Cn. A solution may be obtained by 

employing a va.riation of the  secant metllcd 21 ,22. This is an i terative 

procedure s tar t ing from a t r i a l   s e t  of  values {Cnl. As for  most such 

nonlinear problems, t he   t r i a l  values  for  starting  thc solution nust be 

rea.sonahly close  to  the  solution  for  rapid convcrgencc of thc mcthod. 

Once the computations are undemay , preceding i terates  serve th is  pur- 

pose well enough. In a new computation, however, it may be Ilecessary 

t o  provide i n i t i a l  values without the guidance of prior soluti.ons. One 
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means for  accomplishing th i s  is simply t o  employ the l inear  tangency 

condition, Equation (37), solving  for  the .Cn*values employing . the 

current fJ function. These values of Cn may then be used to calculate 

the velocity. components,. u and w. Since the velocity components change 

less rapidly  than the vortex  strength', a linearized dynamic condition 

may now be employed (with only 7 as an u n k n o ~ ~ ~ )  to  obtain an improved 

set of values {Cnl. This l a s t   s e t  of C values can then be employed as  

a t r ia l  set in the  solution of the  nonlinear dynamical condition. 

Experience with th i s  procedure  has been satisfactory. 

n 

C . Evaluation of the FLmction fJ 

The function fJ is determined i teratively in  the  solution pro- 

cedure. An initial tr ial  value m u s t  be chosen for  a new problem. Sub- 

sequent  values are generated by the program' in the  i teration scheme. 

The procedure, outlined in the previous  discussion, amounts t o  (a) 

s tar t ing with a t r i a l  function fJ, (b) evaluating g(xi)  given fJ so ' 

t'mt the ciyntnical codi t ion  is met, a d  (c) c m p l ~ i ~ g  t5e tzrgexy ccn- 

dit ion  to  guide the  choice of a new iterate  for  the €unction fJ. Both 

fJ and g must be such as t o  sat isfy both the tangency and dynarnical  con- 

ditions in the  solution, 

Upon ini t ia t ing a new computation, it h3s becn founcl cor~veiisl t :  

t o  s t a r t  with a €unction fLT derived fi-om the  two-di~~lensional  solution 

of Spence.' The appropriate equations for this purpose are  l isted in 

Appendix C. While th is  method is best for  small CJ, a, arid T va.lues, 
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it is generally  preferable  to .employ solutions  obtained in the present 

analysis  for  similar parcvnetric ranges, when they  are  available, i f  CJ, 

a, z are  large. More rapid convergence can .then be achieved, as would 

be expected. 

The function f giving the  position of the j e t  in the analysis J 
is not  i tself   sensit ive enough to  be employed either  for  the  estimation 

of errors involved or fo r  i terat ive purposes. Since both the first 

derivative and the  curvature involving the second derivative arise in  

the theory  they must be  represented with sufficient accuracy and regular- 

i t y  in the numerical scheme. Therefore, the  curvature, being most 

sensitive, was employed both as  a basis f o r  the  choice of new iterates,  

and as the  factor on  \:hidl accuracy was judged. 

The computations start with a s e t  of  values for K ( x ~ )  a t  the 

twenty control p i n t s .  This function is numerically  integrated to  yield 

values  for dfJ/clx a t  the  control pints. The  method  employed for  inte- 

gration  of'the  curvature may be found i n  Appendix D. The coefficients in 

the expansion of Equation (34) for fJ are  determined so as t o  provide a 

l eas t  squares fit to  the  slope, dfJ/dx, a t  the  control poklts. 'rhus one 

J M M 

hhere a (j = 1, . . . , J) are the  coefficients i n  the expansion €or fJ 

(cf . Equation 33). and 
j 
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Upon determining .the coefficients a i n  the rcprcsentation of fJ, 
j 

it is necessary to  determine positions of t l ~  new grid  points xk such 

.that they are  equally spaced along the jet .  F p l  spacing of the grid 

points is desirable for better  representation of the  fimctions involvcd 

i n  the numerical work as  mentioned in Section A4. 'Illis amounts t o  

numerical integration  at  the  expression  for de/& 
h A 

0 0 

dividing  the  interval 5 into  suitable eqyal intervals (200 here), and 
A 

establishing a  correspondence between 5, and xk for  each grid  point. The 

relations involved and the  integration scheme  employed are  described in 

Appendix E. 

The computations employing fJ proceed as.  discussed in the previous 

secticn  to an evaluation  of €C I satisfying the dynamical condition. The 

tanzency  condition remains to  be  met. This relation 
n 

+ u(xYoYfJ)l dfJ x - W(X,0,fJ) = 0 

may now be  employed directly  to  evaluate df,/clx a t  each  control  pj.nt. 
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D .  Generation of a New Iterate 

As mentioned i n  section C above, it is  advantageous to  employ K(X) 

as the  basis of the i terat ion sche;ne so tha't the key aspects of t . 1 ~  j c t  

with respect  to  the mechanics of  the problcm may bc represented prop,orl.y. 

Values of K employed a t  first in the co~nputations arc smoothly varying 

in the domain. New i terates  are also  to bc required  to vary smootlily. 

The problem here, of course, is tint of gcnerating smooth  cllanges 

for K based  on information a t  the  discrete  control points regarding dfJ/dx. 

From the  definition 

dfJ/dx and d2fJ/dx2 

6K 

of K, a small cllange may be related  to changes in 

A procedure for  obtaining a se t  of 6~ values at  the  control pints which 

proved effective in the  iteration procedure was simply t o  ignore  the 

first "Lrm (it could be anticipated t o  be small), and to employ the re- 

la t  ion 

where K~~ represents  the  value of K employed in  starting  the prccecting 

i terat ion and 6 (dFJ/nY) represents  the  difference betxcen the co~r~putcd 

values  of dfJ/dx and those  values e~nployed .in start ing the prccding 
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Ki - K~~ + e 6ki 

where e is a damping factor cll~sen to  be small. i n i t i a l ly  and t o  increase 

t o  unity as the  solution was approached. Initial vnlucs for e in a new 

problem  might be on the  order o f  0.2. 

A measure of the error in the result  may be obtained by comparing 

these new values of 'ci at each control  point  with those einployed  upon 

starting  the  previous  iteration. A sum of  the  absolute  value of the re- 

lative  errors betyeen these two values was employed in  the computations for 

this purpose. 'Ille existing method  employed of value of 0.6 for this sum 

(or the average relat ive  error   a t  each point was required t o  be below 0.03). 

If this criterion was not met, the new values  for  the  curvature were 

employed to initiate another  iteration. 

V. ANALYSIS OF THE  FLOWFIELD OF THE  AIRFOIL 

There are two aspects of the aerodynamic f ie ld  of the  airfoil  

zntering  the  theory. The firs't is the need for some i n i t i a l  estimate 

Df the  influence of the'  flowfield induced by the wing on the jet. This 

MY be obtained by means of one of the  simpler  linear wing theories 

€or example.  The second is the  solution of the  fl-owfield about th6 

sirfoil  subject  to  the full influence of the  disturbances  introduced 

by the  jet .  The first is treated  here assuming the  a i r foi l   to  be 
- 
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represented as a l i f t ing   l ine  with the  appropriate  trailing  vortex  dis- 

tribution. An e l l i p t i c  loading is assumed for this purpose with a to ta l  

l i f t  es t i~a ted  t o  r e p e s e t  the  fh l  soluticc (.+ IP& somefiat larger 

tlm that for  the wing alone) . The second is accomplished  by numerical 

methods in.m adaptation of lifting  surface theory. 

A.  Initial  Estimate  of  the  Flowfield of the 
Airfoil f o r  Use in the  Jet  Solution 

For an el l ipt ical ly  loaded wing operating with a l i f t  coefficient 

CL, the  distribution of the vortex strength along thc l i f t ing  line nlay 

be expressed as 14 

where 
1 

rA = z cL 'co '0 

'he vorticity  associatcd with the bound vortex may be placed at  the 

quarter chord point (x = xb) of the  airfoil" and the  trailing  vorticity 

may be regarded as lying in  the z = 0 plane  (refer t o  Figure 8). 

The velocity components u and 1% induced  by this vort ic i ty   dis-  
A 

trj-bution may be determined from the  relations 25 

uA - - .1 z 'S' 'y ; y' dyl J (x - Xb)Z + zz 

59 



Values of uA and wA a t  y = 0 are  required in the j e t  solution. These may 

be obtained by carrying  out  the  integrations of Equations (62) and (63) 

subject t o  the vortex sti-ength dis t r i3~i t ioa of Eq~ztic~ (61) tc  yield 

(cf. Appendix A) 

%(I - )] p 
where K and E are  the f i r s t  and  second complete ell iptic  integrals of 

modulus kA and rI is the  third complete elliptic  integr'il ,  which is also 

a function of the parameter aA: And 
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B .  Solution  of  the - Flowfield about the Airfoil  Subject 
to  the  Interference F i e l d  of the Jet 

Given the  solution  of  the  jet problem as described in  Chapters I11 

and I V Y  subject  to  the  estimated  interaction of the  airfoil of Section 

A abve ,  it is next  required to  obtain a more precise  solution  for the 

flowfield  .about  the wing. This is formally  given by the  relations 

(recall the  discussion of Section I1 B-3) 

subject  to the kinematic  (tangency) condition 

a t  points on the  a i r foi l  whose surface is given by tlze equation 

It should be pointed  out  that unlikc linear  lifting  surface  theories 

the streamwise disturbance  velocity is no longer negligible compared t o  

the freestream  velocity. 

The velocity components uJ and \vJ a t  points on the  surface of the 

a i r f o i l   m y  be evaluated by integration over the  vortex  strength  distribu- 

tion of the je t  
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Only airfoils  with l i t t l e  or no dihedral (i.e. af,/ay is negligible) are 

Considered here. In  addition it is assumed that the spanwise velocity 

component is small compared to  the downwash  and the streamvise velocity. 

components. Therefore,  the  equation  necessary for  the  evaluation of this 

component is dropped  from the ensuing treament . In Equation (68) , the 

integraticns with respect to  y' may be obtained  analytically  (refer t o  

Appendix A). The remaining integrations must be carried  out numerically 

in a manner already  described i n  Chapter 111, 

It remains t o  arrange  the  surface  ir.tegral of Equation (66 ) ,  which- 

gives  the  contribution of  the  vorticity  associated with the a i r f o i l   t o  

the ve1.ocity field:  in a form suitable fo r  solution of the a i r fo i l  pl-obiem, 

The surface over which this integral is cval-tccl includes  the surface 

us& t o  represent the a i r fo i l  (the projection of the wing onto the z = 0 

plane) as well as the surface  containing  the  vorticity which is washed 

downstream, the wake vorticity. The location of the wale vorticity is 

not known, - a  priori. For a  relatively  lightly loaded airfoi l   the   contr i -  

bution of the  vorticity  created by the a i r fo i l  may be considered negligible 

compared to  the  vorticity of the j e t  ii? th i s  wake.region. However, in 

order  to simpli.Ey the  resulting  equations  the  vorticity shed by the a i r f o i l  

will be retained. It is assumed that  the  iocation of th i s  vorticity may 

be taken to  l ie  in the z = 0 plane. This assumption is made in most air- 
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foil theories. It  is therefore  possible t o  u t i l i ze  some of the mathe- 

matical aspects  of  those  theories, 

Employing the definition of a vortex  sheet,14  the  vortex  strength 

of the a i r fo i l  may be presented by the equation 

-f + 
yA = -Av e + Au e + 

X Y 

where 

Defining a doublet  strength as -  

+ - - 3  'd - 0- 

@ being the  velocity  potential, Equation (69) may be written as 

Equation (70) along with the assumptions discussed in the preceding para- 

graph may now be employed t o  provide the  resulting equations for  the 

induced velocity field  created by the airfoil 



Solution of the a i r f o i l  problem requires  these  equations be applied to the 

z = 0 plane. It  may be  seen from Equation (71) that u .  = 0 for   th i s  plane; 

therefore, only Equation (72) remains to  be  evaluated. 

Equation (72) as it stands contains a sine@Larity with respect t o  

both  integrals at  the  control  point (x,y); therefore, a more suitable 

kernel will be  sought. Following the procedure of Robinson and L a u n n m  

this equation may be  written as 

25 

n 

Further manipulations of Equation (73) provide the findl. working equation 

for the downwash induced by the  a i r foi l  i n  the fonn 26 

for an arbi t rary  f ie ld  point (x, y, z). In the linlit z -+ 0 the second 

term of Equation (74) vanishes and the first is given by the Cauchy prin- 

c i p a l  value 
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By defining 

employing integration by parts,  and expanding f(y & E) in a Taylor Series, 

Equation (75) may be  obtained in the  f inal  fonn 26 

where the symbol represents  the Flangler principal  vclue. The Mangler 

principle  value is defined by the  equation 
# 

Equation (76), found in many of the  existing  lifting  sur.face  tllcories, is 

singular  with  respect  to  only  the  outer  integr;rl. The intepxl with re- 

spect t o  x' possess  only a discontinuity, since for  y = y', 

lim x - x' 2 : x > x '  
x+x' 0 : x < x '  R 
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The integral  equation, Equation (66), with w given by Equation . A  
(76), together  with  the  kinematic  condition, Equation (67), now are in a 

form suitable  for mathematical solution. Given a solution Td (x,y) on 

the  surface of the airfoil, the  flowfield may be  computed at a point of- 

interest. There are several methods which may be employed t o  obtain t h i s  

desired doublet distribution. The method adopted here is related  to the 

finite element theories, 27 

The pressure difference  across  the  airfoil may be obtained from 

Bernoulli's  Equation 

As a consequence of the fact that  the  singularities used to  represent the 

a i r fo i l  have  been placed in a plane, the  resulting  velocity  potential  for 

a cambered wing a t  inciqence t o  the  freestream is antisymmetric with 

respect  to  that  plane (z = 0 plane) . Thus, 

Therefore, the pressure  differcrlcc across the  a i r foi l  may be txpressed in 

the form 
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where the assumption that the spanwise velocity component is negligible 

compared to   the streamvise component has been  enployed in this last 

equation. 

Utilizing the definition  of  the doublet strength along with Equation 

(77), a relation  for the change in the  pressure  coefficient  across the- 

a i r fo i l  may be determined 

Substituting Equation (78) into Equation (76) provides the result.- 

Consider f ie  a i r fo i l  t o  be composed of a number of finite, recLarlgu- 

l a r  elements.  In  a manner s imilar   to   f ini te  element theories, it is 

assumed that  the pressure difference  across each element is constant. In 

addition, it will be assumed further  that  the  velocity field induced by' 

tho j e t  is also a constant on each element. The clownwash cluc t o  thc kt'' 

element at  the i controi puirr~ W I  L~IW Le Wxitte~ (i-eLCei- to Fig~rc 3 )  th 

The resulting surface integral in Equation (79) is only a function of the 

geometry of the element. The evaluation 0.f this  integral  is treated in  
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Appendix A where proper care has been taken f o r  the situation in which k = 

. i. Defining 

the  total  downwaA at  the ith element, for  the case in which the wing 

planform is divicld  into 2N elements, may be written 

Uz 2N AC 
Iki 

Because of geometric symmetry the  pressure  difference and velocity  fi-eld 

induced by the j e t  must be  symnetric a b u t  the x-axis, therefore: 

where the kth element l i es  on the  right semi-span wing section (y > 0) and- 

has as its reflection about the x-axis the k + Nth element (refer t o  

Figure 9). I t  may be shown further  that  

The un lnom pressure  difference  for cach clcnlcnt ( X  ) may now 
Pk 

be obtained by applying the kinematic condition a t   the  N control points, 

which have been taken t o  be located at  
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xi = x bi + 0.1 [Xai - xbi) 

Y i  = 0.5 (Yai + Ybi-1 
Inserting Equation (81) into the kinematic condition results in a set 

of N simultaneous, l inear equations  for  the N unknown pressure  differences 

C. Calculation of the Forces on the  Airfoil 

Once the  pressure  distribution on the  a i r foi l  has been obtained the 

pressure  forces may be computed directly. 

where 9 = tail(%) 

(For the situation mdcr consideration Q E a). In  the above equatiirll L 

(Dp) refers t o  t h e  l i f t  (drag) force  experiencd by the a i r fo i l  due to 

the pressure  difference  across it (as opposed t o  the force meatal t)y 

Y 
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the reaction  to the j e t ) .  It  should be mentioned 'that Equations (83) and 

(84) do not include  the  leading edge suction Sorce which provides .only a 

negligible  contribution  to  the l i f t .  Since  the flow is considered inviscid, 

the above equations also exclude skin friction  effects. Written in terms 

of non-dimcnsional variables, Equation (83) has the form 

cos 9' AC 
dSA' 

where S is the  surface  area of the a i r fo i l .  In terms of f in i t e  elements 

covering the  surface, 
A 

where 

is the  area of the kth element. It  should be noticed  that  the assumption.. 

that  the  angle J) is constant for  an element has been employed in Equation 

(85). Such practice is inherent to  the  definition of a f in i t e  elemen: in 

theories such as Woodward's. Utilizing the symmetry conditions, Equation 23 

(85) may finally be written in the form 
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Similarly, the drag  coetficient  resul.ting 5rom the pressure  iiir'ference 

across the wing may be obtained from the  equation 

The to ta l  l i f t  and drag coefficients ,for the  a i r foi l  may now be 

obtained by including  the  reaction t o  the   je t  in Equations (86) and (57) 

c L = c  + -  I cJ c sin (T + a] dy 
LP 'A 

- 3  

= 'DP - J cJ c cos (T + a) dy 

-sJ 

D .  Ca lcu la t ion  of t h e  V e l o c i t y   F i e l d  in the 
V i c i n i t y  of a T a i l  Surface 

The  downwash a t  a point in the  vicinity of a t a i l  o r  control sur- 

face downstream of the wing may be immediately obtained from the  equations 

of the previous sections. For simplicity, a point  located on the x-axis 

is enployed for th i s  mrpose. Tlle velocity at  such a point is written- 

Again the first surface inte,gal w i l l  be referred to as uA(1vA) ,ucl the 

second as UJ(wJ) . 
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The necessary  equations for  the detennination of t h e  vc1.oc:it.y field 

induced by the j e t  sheet a t  the point under consiclcration may be rsblxtincd 

from the formuJ.atj.on of Chapter 111. Because of symnetry the spanwise 

velocity component is zero.  Furthermore, 

N 

n=l 
UJ(X,0,O) = - 1 s' .dfJ' kcJ (IC- .E] . 

E 
. .  

0 

fJ' 
x - x' 5 

1 E - kc: K 1 dx' 
x - x' 

Proper account is taken. fo r  the infinite upper limit and the  singularity 

at  the origin in exactly  the same m e r  discussed in Chapter IV. 

2. The Velocity Field Induced by the Airfoil 

The velocity induced by the  airfoil   at   the  point (x,O,O) may be- 

obtained by employing the  results of  Section B. 
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UA(X,0,O) = 0 

V*(X'o,O) = 0 

2 'A t.e. Ac u, 
WA(X,O,0) = - - (1 + =A) 3x' (90) 8~ K. 

Employing f in i t e  elements' Equation (90) may be written in the form 

where Ik may be found in Appendix A. 

V I .  COMPUTATIONAL  RESULTS 
DATA  AND 

AND COMPARISON 
OTHER THEORIES 

WITH  EXPERIMENTAL 

A .  Choice of Parameters . ~- f o r  the Computations 

The a i r fo i l  and j e t  geometries as  well  as  values  for  the  angle of 

attack  of  the wing, the jet deflection  angle, and the  je t  momentum coef- 

f ic ient  were  chosen largely  in accord  with data  available in the  l i terature 

for the purpose of comparison. Computed results were obtained for a 

rectangular  airfoil  with an aspect  ratio LAR)  of 6.8 equipped with a full 

span je t   f lap.  Choices for  the remaining parameters  along with the com- 

puted resul ts   for   the l i f t  coefficient:  the induced drag  coefficient, and 

the downwash angle (0) and pressure  coefficient (C ) three chord lengths 
P 

in Table 1. 

for small values of a, T, and CJ by 

geometry obtained from the two- 

dawnstream of the   a i r fo i l   a re   l i s ted  

A first solution w a s  obtained 

employing initial values for the  je t  
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dimensional theory of Spence .(refer  to Appendix C). Subsequent solutions 

*were obtained  using initial values-obtained from the  rcsults of an existing 

1 

solution which had input parameters (a, T, and CJ) close t o  those under 

cons ideration. 

Choice of the number of grid  points employed to detcnline  the neces- 

sary integrals and the number of control points on the a i r fo i l  and tile j c t  

was made  on the  basis of providing  the  highest accuracy for  reasonable cm- 

putational  times. By using 201 grid  points, 20 control  points on the jet, 

and 32 elements on the wing, execution  times of approximately 26 seconds 

per  iteration of t he   j e t  problem and 23 seconds to  obtain the resulting 

forces on the wing and induced downwash a t  a downstream location were 

obtained. All computations were made on a CDC 6500. The factors B and v 

(refer t o  Equations (32) 'and (33)) were each given a value cjf 10..for the 

computations. The resuiting  values  for Cn and a, f e l l  in the ranges 

The nearfield  calculations were obtained in the  region  extendhg from the 

t ra i l ing edge of the aif-foil .   to a point ( x ) .  approximately 5 chord lengths 
h 

downstream. It will la t e r  be  observed that   th is  region containd  the 

primary contribution  to  the  vwtex  strength,  as it shauld. 

A solut ion  to   the  je t   pr~3lez vzs zsumed t o  be deteminec! Once the 

sum of  the magnitudes of the  relative  errors between the  curvature  values 

obtained from two consecutive  iterations was  below 0.6 (resulting  in an 

I 
4 



average relative  error of 3 percent). However, for larger  values of CJ 

and a it was fotmd that  the  relative  errors of the mrvature st each con- 

t r o l  point were approximately constant  prior t o  satisfying  t ie above  con- 

vergence criterion. Consequently, when these values were scaled to  pro- 

vide  proper  integrals  (refer  to Appendix D) the  resulting changes from the 

previous iteration was small.  In such cases convergence became slow when 

the average relative  error became less than about 7 percent. An invcsti- 

gation  into th i s  dilennna  showed that  the  application of a decreasing fhc-  

tional form for the damping factor (e) was fruit less.  However, by assuming 

that  the  value of the  je t  slope at   inf ini ty   ( refer  t o  Appendix D) was half 

i t s  value a t  x [a value of zero was employed in the  original computations 
A 

for convenience), it was possible  to reduce the average value of the 

relative  errors t o  2 percent.  Since  the  resulting  value  for  the  relative 

error of  the  1ift.coefficien.t was only 3.5 percent, however, the above 

error  criterion was reduced t o  a  value of 1.3  for  these  cases.  Iterations 

of the  entire problem  were terminated once the relative  error between two 

consecutive  values of the l i f t  coefficient was below 0.025. The-above 

convergence c r i t e r i a  required approximately 3 iterations of the  entire . 

scheme  and an average of 6 iterations of the j e t  scheme. For the   in i t ia l  

values, however, as many as 1 0  iterations were required to  converge on a 

jet solution. 
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B. Results 

The variations of the l i f t  coefficient  with changes in  the j e t  

momentum coefficient  are provided in  Figure 10. Comparison with  the linear 

theories of k s k e l l  and Tohda  are  favorable. For small  values of CJ 

(linear  region)  the disagreement between the  theories was less than 10 

percent. However, the values of C copputed by the present theory for L 
lzrge values nf CJ [ ~ n n l i x a r  region] are  evidently  higher  than what would 

be predicted by extending  the  curves  obtained fronl the linear thcories. 

Experimental  data" are also  available for thc linear rcgion. It can be 

seen in Figure 1 0  t3at agreement  between the present theory and the cxperi- 

mental data is also  quite  acceptable in that regime. I t  should be mentioned 

that the  results of Maskell have  been increased by an appropriate  factor 

t o  account for  the  thickness of the a i r fo i l  employed in  Alexander's1' experi- 

ments. The factor involvcd is discussed in greater  dctail by L i s s m .  

2 4 

2 

7 

It can be  seen in Figure 11 that the  resulting  variations'of CL 

with changes in a provided by the  present  ('nonlinear ) theory l i e s  s l igh t ly  

belolq the  experimental  data and the curves  obtained from the  linear 

theories. However, it has been observed that  linear  theories in general 

tend t o  overestimate the l i f t ,  the  difference  increasing with larger  values 

of CL and T . ~ ~  The linear  theories employed a l if t ing-line approximation 

for the  a i r foi l .  It might be expected that  the  utilization of a l i f t ing-  

surface  technique would lower these  values h a manner sinlilar t o  that $or 

conventional wings." It has been suggested that  the  linear  theories pro- 

vide  favorable agreement with'  the experimental data because of the  "fortui- 

tous cancellations" of higher  order  effects.' The results of Lissaman's 



theory are also  depicted in Figure 11. They tend t o  l i e  even  lower than 

those of the  present theory. 
The results for  the induced drag  coefficient  are presented in  

Figures 1 2  and 13. As already  discussed in the  previous  chapter,  the in- 

duced drag (or thrust f6r the  conditions encountered) resulting from 

the  present  theory  only  accounts  for  the  reaction to  the  jet  and the 

pressure  distribution on the  airfoi.1. Contributions to  the drag attributed 

to fonn drag and t o  viscous  effects, such as skin-friction  or  jet  entrain- 

ment, are  not  reprcscnted in this  analysis. Drag coefficient  valucs for 

a = 0' as well  as  values  obtained from Figure 1 2  for  a # 0' are  presented 

and compared t o  Williams'1o data in  Figure 13. The agreement is again 

quite  acceptable. 

The distribution  of  the  pressure  difference  across  the wing is 

shown in Figures 14 through 19 for  three  different cases. Since only four 

elements were  employed in each of the spanwise and chordwise dircctions 

only  basic  trends  can be obtained from these  figures. For more refined 

results it would be necessary t o  employ  more elements a t  the  cost of 

computing time. As expected, a larger than n o m 1  pressure  difference is 

encountered in the vicinity of the  trailing edge of the  airfoil.  For th i s  

reason a wing equipped with  a jet  flap experiences large nose-down pitching 

moments.  The spanwise distribution, however, is not  very  different from 

conventional wings. Th'is has also been observed in experiments. 10,28 

The locations of the  jet  sheets in the  plane of  symmetry are shown 

in Figures 20 and 21 for  different  values of CJ and a. Obviously, the 
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j e t  lies well below the z = 0 plane. For this reason downwash results ob;- 

tained from linear theories  are open to  serious'question, 

The vortex  distributions provided in Figures 22 and 23 display the 

proper  logarithmic  singularity  at  the  origin. It  is' also  apparent. from: 

these  figures,  that  the  control points were located in a region which 

contains most of the vorticity. The distributions  indicate  that  the vortex 

strength becomes s l ight ly  negative beyond x = sJ. I t  is f e l t  that  this. is - 

a result of errors in the  truncated  series approximation employed for the 

vortex  strength; it is not  likely  to be real. 

As a result of  the  large nose-down pitching moment experienced by 

an aircraf t  equipped with a j e t  f lap,  an exceptionally  large amount of 

trim'is required. Consequently, a  control  surfacc  plays an important role  

in such confip-ations.  I t  is important, therefore, to know the florvficld 

with some degree of accuracy in  regions where the t a i l  surfaces would be 

located. Downmsh results obtained from the present  theory  are shown ' i n  

Figures 24 through 27 in the fonn of t he  downwash angle (0  = tan-' (-UfiV)) 

and momentum or  pressure  information (C ). The results were obtained a t  a 

representative point along the x-axis 3 chord lengths downstream  of the 

t ra i l ing edge of the   a i r fo i l  (x = 0.88 sJ) . 
P 

VII.  CONCLUSIONS 

The results of  the  present  theory show ample  agreement with the 

available experimental  data and  compare well with existing  linear  theories 

in the  operating regime where they  apply. For the lift coefficient, both 

the  variation  with CJ and a found in the theory were satisfactoiy. The 
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values of CL computed  were sl ightly below the experimental data by an 

increment which could easily be accounted for by considering  the a i r fo i l  

thickness  efftkt  both in magnitude and trend. The induced drag (thrust) 

coefficient  also agreed for  the  conditions  considered.  Regrettably,  there 

are no experimental data  available  for  the  position of the  jet  sheet for 

9 -::tcg ecpipped with a jet flap for  larger  values of CJ, or; or T, This 

situation should  be remedied in experimental research.  In  addition, t h i s  

theory extends values  for  the  force system of the a i r fo i l  over a wide 

range of values  for CJ and a, beyond that  for which the  linear  theories  apply, 

Moreover, the downwash cornputations arc  likely t.o be a substantial improve- 

ment over results  obtaind from the linear  theories. 

The existing theory easily ~ a y  be extend.d t o  include  thc incrcasc 

in the 1i.ft due t o  the  thickness of ' the   a i r foi l  and the  jet .  This may 

be accomplished by employing a proper  source distribution over the vortex 

sheets used t o  represent  the  actual wing and j e t .  Furthcrnlorc, it has 

been observed that entrainment effects  are capable of providing substan- 

t i a l  gains in the l i f t   coef f ic ien t  under some circumstances.  This is 

especially  true  for  the.  situation i n  which,the j e t  is exhausted  ovcr a 

small  flap. 29 Inclusion of entrainment phenomena in to  the present  theory 

is also  possible. This may be accomplished by locating a  proper sink 

distribution2' over the  surface used t o  represent the jet.. 

It should be mentioned that th is  theory is not  iimited t o  rectan- 

gular  airfoils equipped with  .full  span.jet  flaps  for which data was  ob- 

tained in the previous  chapter. However, as it exists no account  can  be 

7 9  



made for spanwise variations in CJ and '1: or a wing with  dihedral. More 

general jet   properties may be included by  employing a suitable  functional 

form for  the spanwise variations of the  vortex  strength (g).* Furthermore, 

the present  theory was developed in a manner that any wing theory  might'be 

employed. Therefore, more general a i r fo i l  geometries may be handled by 

uti l izing more sophisticated wing theories such as lVoodwardls .27 Finally, 

it should be noted that  the ground effects problem may be treated by 

employing an imaging technique. 

The present  theory  contains many parameters such as the number of 

control  points,  the  grid  poiit spacing, the  factors B and v , etc. whose 

values must be specified - ab ini t io .  An investigation of .the effects 

changes in each of these parameters  has on the  solution procedure and re- 

sults should be undertaken.  Ultinlately, it would be desirable  to develop 

,ru1 -n "b"&" - 1 = ~ r i + h m  ".. ~ h i r h  ..""_ wnl1ld .. - .._ al.lt.rrmat.ica.lly adjust the values of these  constants 

depending on the  values of T , a, and CJ. Furthermore, a study of diffcrcnt 

Eunctional form fo r  the damping factor (e) which would achicve convergence 

a t  a faster  rate should also be considered. 

* 
but  not without some additional mathematical  complexity in  the jntegrals. 
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APPENDIX A 

Evaluation of the Integrals 

The theory developed within the main text contains several integrals 

of standard f o n .  A brief outline of the  integration procedures and a 

slplpnary of the results are provided herein. 

A. Integrals Inherent' to  the Horseshoe Vortex System 

Referring' to Equation (213.06) of Byrd and Friedman3' for the case m = 1 

K 

I1 = k J cn2 u du = E [E(k) - kz K(k)] (A21 1 

0 

where 

1 CI 
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hploying the equations found on pages' "45 and 49 of Pet i t  Bois 31 

3) 

Consider Equation (213.12) of Byrd  and Friedman3' 

where k sa t i s f ies  Equation (A3). 

B. Integrals  Inherent t o  the Jet Problem 

Taking advantage of the symmetry of the integrand and employing the trCms- 

formation 

such that  
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then 

Both of these  integrals  are  elliptic and may be fotad i n .  Byni and Friedman3' 

(Equations (235.00) and (235.01)). 

where k satisf ies  Equation (A3) 

Consider the transformation 

The original  integral may then be written 
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J1 + cL 
Is = 2 F" 

C 

Fran Equations (218 .lo) and (318.02) of Byrd and F r i e d n ~ m ~ ~  

IS = Zk3 sd2 .u du = -2 2k [E@) - kc K@)] 2 

0 

where k sat isf ies  Equation (A3) 

3) 

where r2 = (x - 5 )  + 01 - rl) +. I! 2 2 2  

and 

= h - c) (rl - c") 

c = y + i  

I6 may therefore be written 

1 

Bnploying Equation (259.05) of B y ~ d  and Friedman 30 
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where 

16 g 7 sd2  u du 
0 

A2 = (1 - y)2 + (x - c)2 + p 2 

B2 = (-1 - y ) 2  + (x - E ) 2  + P 2 

2 '1 s = m  
2 4 - (A - .B) 2 

k. = 
4AB 

Furthermore, it can be shown that 

lim 2k (E - kc 2 K) = Is 
y+O '6 +'x 

kc 

as should be expected. 

where r satis5ies Eqyation (Al3) above. Employing the  identity 2 
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Equation ( f i g )  may be written 

Referring t o  Equation (259.03) of Byrd and Friedman 
30 

when A, B, g,- and k sat isfy Equations (AX) through (M8)  and 

A - B  
A + B  

a=- 

A + B  a = -  
2 A - B  

By uti l izing  the "Addition Equations" (Equatio,l (10) of Byrd and 

Friedman)30 it can be shown that 

n (m, Y 9 k) 
2 

Einploying the  additional rslat ions 

= 2 n (y2, k) 
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t i  I P 
! 

1 

where 

E - k c  2 K 

kc2 
% =  

2 2 
y =* 

the resulting form for .Equation (AZO) may be obtained 
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where 

- 2y 2 
Q =  [ 2 y a + l + a j  

2 

a2 (k2 - v2) 

It can be shown, with some difficulty  that. 

Y-to 
lim I7 + 2k (E - K) = -I4 

as it should. 

.C. Integrals  Inherent  to  the  Finite Element Tecllnique 

(A26) 

where 2 = (x - 5 )  2 2 
+ 0 - r l 1  

Defining the inner integral as J 

Using the   t ransfomt ioq  p = (x - E), the   resul thg integral may be found 

in Dwight” 
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in which 5 is given  the  value of the limits. 

n The remaining integral must be considered  over two intervals, one 
containing the point y = q and  one not  containing this point; The l a t t e r  

situation provides no difficulty 

I S =  I E - Jr, - 512 + IY - dZ dq 
(Y - d 

- I (y:n)2 - I - (x - e l2  + ( y  - 11)’ d,, 
(Y - r1I2 

I The first integral can be found immediately 

The second integral may be determined by employing the transformation 

Then 

J (y - n l “  I 

” J(i - + pz 
P + [P +](x - El2  + PZ1 
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The fhal result m y  be written 

I f  the interval of integration includes the point y = TI one m u s t  

hqndle the resultxg singular integrand. This may be accaaplishctl by 

employing the bmgler Yrincipai vaiue“ - whicn is defined as 76 

I t  my  be shown that the resulting limit is , identical   to  the result givcn 

in Equation (A30). 

By substituting  arbitrary constant limits into Equation (AZ8) the 

functional form employed in Chapter V may be  obtained 

t (b - a) + ](y - d)‘ + (x - a)’ . - J(y - d)’ + (X - b ) z  
.Y - d 

- (b - a) +J(y  - c)’ + (x - a ) z  - J(y - c)’ + (X . -  b)‘ 
Y - =  

90 

i 



” 

y - c +./e - c)’+ (x1- b)‘ 

- h Y  - d +  J(y - dp + (x - a)2 

Y + (x - b)’ - d + J(y  - d)‘ 
( A m  

&lthough the  integral employed for the downwash calculations is a 

special  case of Equation (A28) use was made of the  fact   that  the integrand 
i l  1 was symmetric. The integrations were therefore performed over a11 clement 
I and i ts  reflection about the  x-axis. 
1 

(b-a) ‘+  “ J m  d ’+ (x a) 

+ (b-a) + “m c + (x C a) 

d +JdL + (x-b)” c + Jc‘ + (x-b)‘ J 

where use has been made of the  identity 32. 
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For elements lying along the x-axis (c = 0) the Mangler Principal 

Valuez6 ‘must be obtained. ‘fie resulting form is 

d b 
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APPENDIX B 

Algorithms for - the Complete Elliptic  Integrals 

There are a number of existing  algorithms  which are capable of 

providing extremely accurate results for. the three types o f   e l l i p t i c  

integrals. 

t o  compute 

which were 

algorithms 

Because of the  f requent  number of times it is necessary 

these integrals it was a l s o   i m p o r t a t   t o   o b t a i n  methods 

relatively quick.. It was f o r  this reason  that  the below 

were chosen.for   the first and second e l l i p t i c  integrals over 

methods which employed Landen or Gaub transformations.. 

A. Alsoritk, - for the   Ccmptzt icn of the  F i r s t :  
Complete E l l ip t i c   In t eg ra l  33 

where 

K(k) = (( (0.03202.4666 kc2 + 0.054544409) 

1.3862944) - (( (0.010944912 kcz + 

0.12475074) kcz + 0.5) I n  (kc ) 2 

+ 0.097932891) kcz f 

0.060118519) kc2 +- 

kc2 = 

B. 

1 - k2 

Algorithm for the  Computation of  the 
3.” Second Complete E l l i p t i c  -~ Integral 

where 

E(k) = (((0.040905094 kcz + 0.055099193)  kc“ + 0.44479204) kcz + 1.0) 

(( (0.01382999 kc2 + 0.08150224) kc2 + 0.24969795) k:) In (kcz) 

kc2 = 1 - k 2 (B2) 
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C. Algorithm. for  'the computation of 'the'. 
' Third Comlete El l ip t i c  Intepd3' 

Mst ing  algorithS' For ~iihe"COnp3u;tation of the third complete 

elliptic. integral are more complex than the above algorithms, The method 

of computation employed herein uses the Landen transformatiqn and was 

found t o  prwide excellent results. 

Given: kc, k , y 2 2. 

PIFO = r/4- 

IF kc x d = 0. : FAILS 

IF kc x d f  0 : BEGINS 

IF d > 0: 

c = l/d + 1 

d =a 
b = l/d 

f = l  

I F d k  0: 

a = l - d  

f = k C x k C - d  
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IF 

IF 

Ll: a = E;x) x kc 

n = a/d 

b = Z x ( f x n + b )  

f = c  

d = n + d  

n = . M I  

c = b/& + C. 

MO=kc+M3 

Go to LI 

It(y2, k) = PIFO x c m  
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. .  .. . , .. . APPENDIX C 

Calculation of the  Initial Values for the 
Geometry of the  Jet ' 

For small ,,values of the parameters CJ, a, and T, results of 

Spence's' two-dimensional. theory has  utilized for the determination of. 

initial  values for t he  jet  geometry in the plane of symmetry,- The 

necessary  equations  are  summarized below. 

df ( $ 1  
= - T cos3 $1 + a(s in  4, - 1) - (A0'c + Eua) sin z $$ COS' 1 1 

dx 
" N-1 



and %, Bn are solutions t o  the sets of simultaneous linear equations 

4 N-1 4 
'J * (am0 + 5 b mo )B o + n=l (am + - b  ) B n =  e m 

4 1 bm = '7 (cos n$ + 2n tan 4,,, sin n+,,,) .. 
4n -1 

1 1 
em = - 2 sec z (bm (1 - sin z 4m) 

and m 4m =I -. n ; m=O,. . . ,N-1 
Because Spence employed assumptions inhercnt t o  linear ncroclynanic thcory, 

the relation for the curvature, Equati.on C3 w a s  o l~taind from the approxi- 

mation 

d2fJ 
K S 7  

.9 7 
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APPENDIX D 

Curvature  Integration  Algorithm 

The captations of  the  iteration  scheme  employed for the  solution 

of the jet  problem  are  initiated with a set  of  values for the  jet curva- 

ture at the control points. These  values  are  utilized  to  determine  the 

resulting  jet  slope  values  at  the  same  locations. This task is not as 

straightforward as might  be  presumed  since  the  integrals of the  curva- 

m e  must be properly bounded in order  to  ensure  the  evaluation  of  the 

jet  slopes. Thc definition  of  curvature 

along with  the  condition 

[%I x=o = - tan (T + a) 

provides a first order differential  eqyation  for  'the j e t  slope which  has 

the solution 
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where 

J1+ tan' [T + u) 6 

Obviously & and therefore  the  integral of the  curvature must be properly 

bounded in order t o  ensure that  the term under the'radical of Equation 

@2) does not become negative ( J A J  '< - 1). In  addition, it is expected 

that the slope of the jet  remains negative.  unfortunately,  the set of 

curvature  values  predicted from a previous i terate may not  satisfy this 

criterion. This dilemma is circumvented by bounding the  integral 

where % is the  largest  control  point. 

Because the  curvature  exhibits  a  logarithmic  behavior, it has been 

established that the  best method for obtaining  the  integral of the 

curvature at each of the N control  points is by analytically  integrating 

the approximation 

The cocf€icients (bm) in the above series  are determined for each interval 

- s) by satisfying Equation 0 5 )  a t  the M+l control points closest 

t o  this interval.  In  this manner a set of values  for  the  integrals 
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xn I K' dX" 

0 

necessary for  the  evaluation  of An (cf. Equation D3) and ultimately  the 

first integral on the  right hand side of Equation @4) may be determined. 

The remaining integral of Equation @4) is obtained by employing 

the  series approximation for the  slope (refer t o  Section A2 of Chapter 

111) b 

dfJ x= - tan (T + a) + 1 i a i  1 - '  

M [  
1 

i=l (F + 1) i+l] 

where x = vx/sJ. The second derivative of fJ may therefore be written 

For large  values of x, the above series may be truncated t o  provide the 

approximations 

2 
fJ ~ 

2al v 
3 @8) 2 SJ (x + 1) 

Substitution of Equations (D7) and 0 8 )  into (Dl) provides the resulting 

approximation . . . .. for the  curvature 
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G-nploying Equation (D9), it is now possible t o  obtain an approxiiimte 

value for the remaining Lntegral of Equation (D4) 

( 2)m - +  t'm (r + u) 
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A value  for  the  right  hgd  side of Equation 011) has  already been obtained. 

Therefore, by assuming a value for (cifJ/clx)m (one wculd e q c c t  the  slope 

of the jet at  i n f i n i t y   t o   l i e  within the range ('dfJ! x/ XN < '( YE- dfJ) . - < o )  a 

ratio of the values of the   l e f t  and right hand sides of Equation 011) 

may be obtained. This ra t io  provides a multiplying  factor for the  set  

of integral  values of Ecpation (D6) resulting in a  properly bounded se t ,  
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APPENDIX E 

Calculation ~~ of the Grid Point  Locations 

.The region of the jet  located  closest  to  the  airfoil obviously 

supplies  the dominant effects on the wing not  only because of its 

proximity  but  also because it contains  the  largest  values of the  vortex 

strength. It is th.erefore advantageous t o  employ more control  points 

in th i s  region,  the number increasing  with  increasing  values of CJ, T, 

,,and a. For this reison,  the  grid  points (which ultimately provide the 
1 
t 

control  point  locations)  are chosen to   l i e   a t   equid is tan t   in te rva ls  along 

the jet   sheet.  

With the- je t  :;lope known as a  continuous  function of x (refer t o  

Section A2 of  Chapter 111) the arclength ( 5 )  along the jet is d6tennined 

from the first order,  linear  ordinary  differential  equation 

where 

C(x = 0) = 0 

The solut ion  to   this  system is obtained by ut i l iz ing a fourth order Runge- 

KuttaZ3 technique to obtain  the  necessary  starting  values and a fourth 

order  Adams-hb~lton'~~ schefne for  the  determination of the remaining values. 

For the problem of concern  thcse two techniques may be written as 

103 



where 4 n+l  n = x   - x  

and 

where A = (",+I - xn) = constant 

respectively. 

Given a suitable  interval (AC = h) values of xi (i = 1,. . . , 201 
herein) which provide  equally spaced values' for the arc length (E,) may 

rmw be  detennined.  Since x (6, = x1 = 0) i s  less  than AC the procedure 

is initiated by. choosing x2 = h  (the  barred  variables  are used i n  or  

calculated from Equations (E2) and (E3) whereas the unbarred variables 

are those  being  sought) and calculatkg  t.he.resulting c2 from Equation 

(EZ). If F2 (refer t o  Figure 28a) is  greatcr than 6, = c1 + A 5  (wl1ich 

must be the  case  for  the  init ial  attcnlpt) x and a re   se t  cqunl to :U 3 3 2 
an6 c' respectiveiy tile values of X and n arc halved and a new value for 2 
c2 is determined.  This  procedure is .continued until 'c2 < c,, is obtained 

(refer   to  Figure 28b). A t  th i s  point the  values of s;, 6, and r3 as well 

as their  absissa (TI, y2 and X3), ,and 6, are known 'therefore an inter- 

polation scheme may be ut i l ized  to  obtain x2. 

- 

Having determined the  three necessary start ing values GI, x2, x3) 
" 

the implicit Adam-Pbulton technique is now employed.: c3 is first checked 
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t o  insure its. value is .less than 5 (5 - + AS) . If it is not r4, 
which is t.he value of 5 at f + h (where h is now the  final  result of 

' the halving procedure described in the previous  paragraph), is obtained 

2. from Equation (33). This marching technique is continued unt i l  ci is 

3 n - %-I 

Q 
determined  such that ei > 5,. The value of x, is then  obtained from the 

interpolation scheme (refer t o  Figure 28c) . . This method is continued 

u n t i l  an array  containing  the  desired number of abscissa (xi) his been 

A second order,  divided  difference  interpolation  techniqueZ4 was 

chosen for  the  determination of the  abscissa (x$' This scheme has the 

form 

where x[Fi- j. . . ,Ti] is a divided  difference.  Therefore, 

The values ri, and Fi-2 are chosen such that only Ti is grcater 

than ck (refer  to Figure 28c). 
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APPENDIX F 

Evaluation of the  Integrals  Associated  With  the Jet Problem 
in a Neighborhood of the  Control  Point 

Consider the problem of 

X-El 

which involves a singularity at 

evaluating the 

the  point x' = 

Cauchy principal value 

( W  

x. I h e  function f(xl)  

is continuous and non-singular in the  region of concern (refer to  

Section Al of Chapter IV). Consequently, for  smal1,values of and c2, 

a sufficient approximation for this integral w y  be obtained by employing 

a fourth degree polynomial approximation for f (x1). The resulting 

integration may then be performed analytically. 

?he  method used herein employs Lagrangels interpolation fommla 24 

fer appmximating f  (x1] in  the  region x, < x* x, (where x < x- c, and 
v -  "- 

'I 0 - 
x4 ' X+%> 

4 

i = O  
f(x') = C Q ~ ( x ' )  f(xi) 

[Xr-Xi) (X'tX ) (x!-x .) (X!% - - k m n 
Qi cx.-x x -x x. -x x.-x ; j ,k,m,n # i (F31 

1 j)( i kl( 1 m'( 1 n) 
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R 

X I  = X-€ 

xz = x 

x3 = x+"2 

1 

Equation (F3) may be written 

Q i  A i  (X' 4 . - a3i xi 3 + aZi x' 2. - ali x' + aoi> 

aoi = x x x 

ali = x. (x (x +X ) + X X ) + xk )m 

j k m ) h  

J k m n  m n  

a 2 i  x *  (x + + xn) + x k ( s  + x,.,) + )h J k  

j ' x k + % + %  a3i = x 

for j ,k,m,n # i. Employing the identity x' x - (x-XI), E<luation (ps) may 

be expressed in the form 

Qi = Ai {(x-x') 4 + - 4x1 (x-x() 3 + [aZi - 3x aJi + 6x2] 

(x-x)) 2 + [a,i - 2x azi + 3x .2 aSi - 4x 3 ] (x-x() + 

2 3 4 [aoi - x ali + x azi - x aSi + x 31 
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Substitution of Equation (F6) into Equation (F2) provides the result 

f(x') = C Bi(x-x')' 
i=O 

4 2 3 B~ = C f(x.) A [a - 2x a + 3x a - 4x ] 
j = O  J j 1j 2 j  3j 

B2 = c f (xj) A [a - 3x a + 6x'] 
j = O  j 2 j  3j 

4 
Bg = C f(x.) A. [a - 4x1 j -0 J J 3j 

4 

This last  expression for f (x() may now be used i n '  Equation (Fl) to ob- 

tain desired  approximation 

(F8) 

108 



TABLE 

COMPUTED  RESULTS 

~~ 

5 1  

11 T. = 31.3  degrees 
I 

cJ a (degrees) CL cD 0 (degrees) C P 

2.08 0 2.548  -1.777. 8.62  0.02874 

2.08 5 3.259  -1.499  11.01 0.04397 

2.08 10 3.925 -1.113 13.28 0.06248 

2.0 0 2.434 -1.709 8.22 0 .   E662  

3.0 0 3.326 -2.563 10.37 0.04341 

4 :o 0 4.197  -3.418  12.35 0.06199 

6.0 0 5.817 -5.127 15.43 0.09904 

8.0 0 7.388 -6.836 18.00 0.13562 
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a) Jet Flap. 

b) E1v.m Flap. 

c)  Augmentor Wing. 

Figure 1. Powered Flap Configurations. 
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Representing the Jet 

a) Locations of the  Singularities and the Stream Surfaces. 

camber l i n e  

chord line 

b) Geometric Parameters. 

X 
/ / 

l" 

b) Geometric Parameters. 'C 

Figure.2. Jet-Flap and Airfoil Geometry. 

114 

P 



I 
4 

"\ t 

a) Control Volwnes. 

t 
'S 

b) Nomenclature  Associated w i t h  the Vortex Sheet. 

Figure 3. Basic Flow Considerations. 
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Figure 4. Variation of the Functions Enployed in 
Obtaining the Cauchy Principal Value. 
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Figure 5 .  Jkriztion of the Integrands Bnployed for Obtaining 
LIe Integrals with the  Infinite Upper Limit.  
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Figure 6. Variation of Terms Which are Factored frm the 
Integrals in i2 6 Neighborhood of the Origin. 
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Figure 7. Variation of t h e  Integrands About the bntrol  Point. 



BOUND VORTEX 

Figure 8. Horseshoe Vortex System. 
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k+ Nth ' FINITE. 

b) Location of the Control Point 
on the ith Elwent .  

Figure 9. Finite Element Geometry. 
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Figure 10. Variation of the Lift Coefficient with Jet 
Momentwn Flux for 'a - 0'. 
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Angle of Attack' for CJ = 2.08. 
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Figure 12. Varjiation of the Drag Coefficient with 
Angle of Attack for CJ = 2.08. 
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Figure 13. Variation of the Drag Coefficient 
with Jet M.mentum Flux .  
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Figme 14. Sparswise Distribution of the  Pressure  Difference 
Across.the'Airfoi1 for CJ = 2.08 and u = 0'. 



2 

-AC, 

I 

0 
- I  

RECTANGULAR WING 
FULL SPAN FLAP 
AR = 6.8 

\ 0 . 6 2 r  A 

0 
% I C  

Figure 15. S t r d e  Distribution of the PreSSure Differexla 
Across the Airfoil for CJ - 2.08 and a = 0'. 



i. 
\ 
\ 

3 

2 

I 

L RECTANGULAR WING \\ 

t AR = 6.8 

a=Oo 
T = 31.3* \\\ 
CJ = 4.0 

t u 
Figure 16. Spanwise Distribution of the Pressure  Difference 

Across the Airfoil for CJ = 4.0 and a = 0' 



-ACp 

3 

2 

I 

\ \ RECTANGULAR WING 
RILL SPAN FLAP 

. AR =6.8 

’ 0.625 

0.875 

Figure 17. Streanwise  Distribution of the Pressure Difference 
Across the Airfoil for CJ = 4.0 and a = 0’. 
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Figure 18. Spanwise Distribution of the Pressure Difference 
. Across the '  Airfoil for CJ = 2.08 and u = 10'. 
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Figure 19. Streamwise  Distribution of the Pressure Difference 
Acruss the Airfoil for CJ - 2.08 and u = loo. 
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Figure 20. Locations of Jet Sheet in the Plane of Symmetry 
for Variations in the Jet Mmentum Coefficient. . .  .. .. 
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Figure :!l. Locations of the Jet  Sheet in the Plane of Symmetry 
for Variation? in the  Angle of Attack. 
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Figure 22. Variation of the Jet Vortex Strength in the  Plane 
of Symmetv with Changes in the Jet Momentum Coefficient. 
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Figure 23. Variation of the Jet Vortex Strength in the Plane of 
Synunetry with Changes in the Angle of Attack. 

135 



16 

Q 
(DEGREES) 

8 

RECTANGULAR WING 
FULL SPAN FLAP 
AR = 6.8 
0=0° 
r =  31.3' 
x/c 0 3 

Figure 24. Variation of the Downwash Angle with 
Jet  Momentum  Coefficient for Q = Oo . 
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Figure 26, Variation of the Pressure Coefficient w i t h .  

Jet bbmentum Coefficient for a = 0’. 
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Figure 27. Variation of the Pressure Coefficient 
with Angle of Attack for CJ = 2.08. 
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Figure 28. Determination of the Abscissa for Points, 
Equally Spaced Along the Jet Sheet. 
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